
NAVAL POSTGRADUATE SCHOOL
Monterey, California

DISSERTATION

SYSTEM INTERDICTION AND DEFENSE

by

Eitan Israeli

March 1999

Dissertation Advisor: R. Kevin Wood

Approved for public release; distribution is unlimited.

mc ^«KBD4. 19990419 070

REPORT DOCUMENTATION PAGE Form Approved
OMBNo. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters
Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
March 1999

3. REPORT TYPE AND DATES COVERED
Doctoral Dissertation

4. TITLE AND SUBTITLE
SYSTEM INTERDICTION AND DEFENSE
6. AUTHOR(S)

Israeli, Eitan

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

5. FUNDING NUMBERS

8. PERFORMING
ORGANIZATION REPORT
NUMBER

10. SPONSORING/
MONITORING

AGENCY REPORT NUMBER
11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
We study the problem of interdicting components of an adversary's system, e.g., a war-time economy,

a transportation network, etc. Basic techniques are developed and illustrated with a simple network
interdiction problem, "maximizing the shortest path" (MXSP). In MXSP, an interdictor wishes to employ
limited interdiction resources as effectively as possible to slow an adversary in moving between two network
nodes. "Interdiction" destroys a network arc entirely or increases its effective length through an attack. This
bi-level, max-min problem is formulated as a mixed-integer program (MIP), but unique decomposition
algorithms are developed to solve the problem more efficiently than standard branch and bound. One
algorithm is essentially Benders decomposition with special integrality cuts for the master problem. A second
algorithm uses a new set-covering master problem, and a third is a hybrid of the first two. We extend our
techniques (/') to solve general system-interdiction problems, some of which cannot be formulated as MIPs, (if)
to solve system-defense problems where critical system components must be identified and hardened against
interdiction, and (//'/') to solve interdiction problems with uncertain interdiction success. We report
computational experience for MXSP, a shortest-path network-defense problem and MXSP with uncertain
interdiction success.

14. SUBJECT TERMS
Network, Interdiction, Defense, Benders Decomposition, Stochastic Programming, Set Covering

17. SECURITY CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE
Unclassified

19. SECURITY CLASSIFI- CATION
OF ABSTRACT
Unclassified

15. NUMBER OF
PAGES 144

16. PRICE CODE

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

Approved for public release; distribution is unlimited

SYSTEM INTERDICTION AND DEFENSE

Eitan Israeli
Major, Israeli Air-Force

B.Sc, Hebrew University of Jerusalem, 1985
M.Sc, Tel-Aviv University, 1990

Submitted in partial fulfillment of the
requirements for the degree of

DOCTOR OF PfflLOSOPHY IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
March 1999

Author:

Approved by:

R. Kevin Wood
Professor of Operations Resea

Dissertation Supervisor/

Gerald G. Brown
Pjptffessor of Operations Research

AlaiiR. Washburn
5fe£sor of Operations Research

Harold Fredricksen
Professor of Mathematics

w4\ f ayne P. Hughes
Adjunct Professor of Operations Research

Approved by:

Richard E. Rosenthal, Chair,
tment of Operations Res

Approved by:
Anthohy-Ciavarelli,

Acting Associate Provost for Instruction

in

IV

ABSTRACT

We study the problem of interdicting components of an adversary's system,

e.g., a war-time economy, a transportation network, etc. Basic techniques are

developed and illustrated with a simple network interdiction problem, "maximizing

the shortest path" (MXSP). In MXSP, an interdictor wishes to employ limited

interdiction resources as effectively as possible to slow an adversary in moving

between two network nodes. "Interdiction" destroys a network arc entirely or

increases its effective length through an attack. This bi-level, max-min problem is

formulated as a mixed-integer program (MIP), but unique decomposition

algorithms are developed to solve the problem more efficiently than standard

branch and bound. One algorithm is essentially Benders decomposition with

special integrality cuts for the master problem. A second algorithm uses a new set-

covering master problem, and a third is a hybrid of the first two. We extend our

techniques (/') to solve general system-interdiction problems, some of which cannot

be formulated as MIPs, (if) to solve system-defense problems where critical system

components must be identified and hardened against interdiction, and (iif) to solve

interdiction problems with uncertain interdiction success. We report

computational experience for MXSP, a shortest-path network-defense problem

and MXSP with uncertain interdiction success.

v

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A.

B.

SYSTEM INTERDICTION 2

REFORMULATION 5

C.

D.

SYSTEM DEFENSE 12

OUTLINE 13

n. SHC

A.

>RTEST-PATH NETWORK INTERDICTION 15

THE BASIC MODEL: MXSP AS A MIXED-INTEGER

PROGRAM 17

B.

C.

A BASIC DECOMPOSITION ALGORITHM 20

A SECOND DECOMPOSITION ALGORITHM 25

D. A HYBRID DECOMPOSITION ALGORITHM 33

E.

F.

COMPUTATIONAL EXPERIENCE 36

CONCLUSIONS 42

m. THI

A.

; SYSTEM-INTERDICTION PROBLEM 45

WHEN SYSTEM OPERATION CAN BE MODELED

WITH A MIXED INTEGER (LINEAR) PROGRAM.... 45

B. INTERDICTION OF EVEN MORE GENERAL

SYSTEMS 53

C. CONCLUSIONS 56

IV. SYSTEM DEFENSE - THE SHORTEST-PATH NETWORK-

DEF

A.

ENSE PROBLEM 59

DEFENDING THE SHORTEST PATH - THE MODEL. 60

B. NESTED DECOMPOSITION FOR SOLVING DSP 62

C.

D.

COMPUTATIONAL EXPERIENCE 69

CONCLUSIONS 71

vii

V. STOCHASTIC SHORTEST-PATH NETWORK

INTERDICTION 73

A. THE MODEL 73

B. DECOMPOSITION APPROACH 76

C. APPROXIMATION THROUGH DECOMPOSITION... 79

D. A LOCAL-SEARCH PROCEDURE 91

E. COMPUTATIONAL EXPERIENCE 92

F. CONCLUSIONS 96

VI. CONCLUSIONS 99

LIST OF REFERENCES 105

APPENDIX A. BI-LEVEL LINEAR PROGRAMMING Ill

A. BI-LEVEL LINEAR PROGRAMMING Ill

B. THE LINEAR MAX-MTN PROBLEM 113

C. THE BI-LEVEL MIXED-INTEGER PROBLEM 114

D. APPLICATIONS 114

E. ALGORITHMS FOR LMN AND BLLP 116

F. ALGORITHMS FOR THE BLMD? 123

G. CONCLUSIONS 127

APPENDIX B. THE MORE GENERAL SYSTEM-

INTERDICTION PROBLEM 129

INTIAL DISTRD3UTION LIST 133

vui

ACKNOWLEDGEMENT

In remembrance of my mother, Dina Israeli, I would to thank to all the

individuals and organizations who have helped to make my dream into such a

sweet reality. In a pseudo-random order, I wish to recognize my daughters

Haggar, Noa, Neta and Na'ama Israeli, my father Efrahim Israeli, Aviva Yanay,

Ariel Granit, Amir and Ronit Uziel, the Israeli Air-Force, Amir Yarom, Arent

Arntzen, Arik and Mazzal Agami, Yoram Hamu, Jerry Brown, Arthur and Lea

Shavit, Lisa Puzon and all the other in Operations Research Curricular Office,

Beny and Tamar Neta, David and Sara Levy, Boaz and Ephrat Pomerantz, Elga

and all the other in the La Mesa Child Development Center and La Mesa Youth

Center, Juliet, Debbi Kreider and all the others in Glasgow Computer Support

Group, Cindy Graham, Richard Barratt and all the others in NPS International

Office, Hovav Dror, Mehmet Ayik, Amir Israeli, Kirk Yost, Jonathan Silverberg,

Kereki Laszlo, Liora Katzir and all the others in Israel Armed Forces Attache

Office, RC and Mimi Schwertfeger, Rick Rosenthal, Hal Fredricksen, Steve Baker,

Jeff Appleget, Netzer, Sergiu Hart, Erez Sverdlov, Wayne Hughes, Assaf Heller,

the Hebrew Department at the Defense Language Institute, Sybil Washington,

Terry Bilodeau and all the other in Glasgow Administrative Support Group, Rob

Dell, Arthur Bettega, Robert Read, Al Washburn, and Craig Wevley.

However, special thanks I owe to the best advisor in the world, Professor

Kevin wood, and to the best spouse in the world, my wife, Alit Israeli.

IX

I. INTRODUCTION

This doctoral dissertation investigates what we call "The System Interdiction

Problem," (SI), and "The System Defense Problem," (SD). In SI, an "adversary" tries to

maximize the utility of his system (modeled as general linear or integer programs), and

an "interdictor," with limited assets, tries to minimize that maximum by limiting the

adversary's feasible actions, or by increasing the cost associated with his activities. As in

a zero-sum Static Stackelberg Game (see Simaan and Cruz, 1973, for the definition of

Stackelberg strategy), we assume that the interdictor (leader) first chooses his actions and

only after that the adversary (follower) decides how to operate the system, as best

possible, given the effects of the interdiction. SD extends that methodology to plan

effective "hardening" (defense) of a system to minimize the effects of subsequent

interdiction. In SD, the players change sides: The leader is the system user who first

chooses his defense actions and only then the interdictor, now the follower, chooses his

interdiction plan.

Throughout this work, we have a special interest in the problem of interdicting (or

defending) a road or other transportation network in order to maximize the post-

interdiction shortest-path length between two specified nodes. In this problem, a

"network user" wishes to traverse a path of minimum length (or minimum time,

minimum cost, etc.) between two specified nodes, s and t, in a directed network. But, by

first attacking the network using limited resources, an interdictor can destroy certain arcs,

or increase the effective length of certain arcs, and thereby increase the minimum length

in the a priori network.

(a) Maximizing the Shortest Path (MXSP) is the interdictor's max-min problem:

Subject to a limited interdiction budget, interdict arcs in a network so as to

maximize the shortest-path length between nodes s and /.

(b) Defending the Shortest Path (DSP) is the network user's min-max-min problem:

Subject to a limited defense budget, harden arcs against interdiction so as to

minimize the post-interdiction shortest path, given that the interdictor will

optimize his interdiction plan with knowledge of which arcs are hardened.

Hardened arcs are assumed invulnerable.

In the rest of this chapter, we formulate SI and SD as mathematical programming

problems, and motivate some new approaches for solving those problems.

A. SYSTEM INTERDICTION

The system interdiction problem is a generalization of network interdiction

problems, which have received considerable attention over the years. First were the

military applications, like interdiction of ground-forces transportation (e.g., Ghare,

Montgomery and Turner 1971, McMasters and Mustin 1970, Golden 1978, Fulkerson

and Harding 1977), and lately drug interdiction efforts have triggered more research (e.g.,

Wood 1993, Washburn and Wood 1994). Today, military and civilian systems are

becoming even more complicated and interdependent, so interest in interdiction of

"general systems" arises, too (Chern and Lin 1995).

The system interdiction problem is a model for the following scenario: Two

opposing forces, a leader (interdictor) and a follower (adversary), are involved in a

■2-

warlike conflict. We assume that the follower operates a "system," with its optimal

operation represented adequately by the solution to a linear program. (Later we extend

our results to interdiction of systems represented by more general optimization

problems.) Thus, the follower's problem, with no interdiction, is simply

max{cry|/4y<b,0<y<u}where c,y,ue$Rw, b &ftm,A e<Rmxn and cT is the

transpose of the column vector c (we assume that the follower's problem is feasible). On

the other hand, the interdictor tries to minimize the follower's objective value by

preventing the use of some of the follower's possible activities, indexed by j. Let the

feasible set for the leader be X= jx e{0A}M|^x^r}. Xj =1 means that activity j is

interdicted and Äx < r represents the restrictions on interdiction resources (we assume

that X is not empty).

The system interdiction problem finds the optimal interdiction strategy x* for the

leader. The optimal solution for the follower given x*, denoted by y*, is not particularly

important. Two special instances of SI are:

(a) Interdiction of a max-flow network system (e.g., Ghare, Montgomery and Turner

1971, Wood 1993) is a situation where the follower maximizes flow through a

capacitated network, while the leader, with limited interdiction resources, can

break some of the network's arcs (a broken arc has no capacity), and

(b) The k-most-vital-arcs problem (Corely and Shaw 1982, Malik et al. 1989) is a

special case of MXSP where the interdictor seeks to destroy exactly k arcs to

interdict the network most effectively.

-3.

Let U= diag(u). Then, The Linear System-Interdiction Problem (LSIP) is defined

to be the following leader's problem:

[LSIP] min max cry
xeX ye7(x)

where X = {x e {0,l}n | R& £ r}, and

7(x) = {y\Ay<b, 0<y<U(l-x)}

The follower uses activity j at level». By interdicting activity j, the leader changes the

upper bound on» from uj to 0, i.e., forces the follower to accept» =0 (we assume that

7(x) is not empty for all feasible x eX).

Remark: In Appendix B we show that [LSIP] is equivalent to a more general system

interdiction problem where Y(x) = {y\Ay + Bx< b}and where the leader can change the

cost of the follower's activities as well. This general case allows any single interdiction

by the leader to affect one or more of the follower's possible activities and available

resources. For instance, in MXSP, one interdiction attempt might increase the length of

several arcs and/or delete one or more nodes from the network.

Formulation [LSIP] is a structured case of the Bi-Level Mixed Integer

Programming Problem (BLMEP). (See Ben-Ayed 1993 for an introduction to BLMIPs.)

However, the general BLMIP does not assume a max-min conflict as in LSIP, and the

objective functions of the leader and the follower may have much in common in the

BLMIP, rather than being in direct opposition. For instance, the leader and follower may

represent two levels of decision makers in the same company, and therefore they have

similar, although not identical, goals.

In Appendix A existing algorithms for BLMIPs are explored, and it is shown that

none of those algorithms is appropriate for large instances of LSIP. Some of the

algorithms (Bard and Moore 1992, Wen and Yang 1990) use a positive approach, which

means that they work better when there is strong correlation between the leader's and

follower's objective functions. Such algorithms are likely to be inefficient when applied

to max-min problems such as LSIP. Two other BLMEP algorithms (Moore and Bard

1990, Vicente et al. 1996) may not be directly positive, but they rely on solving bi-level

linear programs (BLLPs) which are nominally solved using a positive approach. In fact,

only three exact algorithms for BLLPs have been tested on relatively large problems

(Bard and Moore 1990, Hansen et al. 1992, Judice and Faustino 1992), and all of these

algorithms use a positive approach. A few exact algorithms (Vaish and Shetty 1977,

Anandalingam and Apprey 1991, Onal, 1993) use what appears to be a non-positive

approach, but none of these algorithms have been tested on large problems. Finally, we

note that no extant algorithm in the bi-level arena, exact or heuristic, is designed to take

advantage of the special max-min structure of LSIP, or the special shortest-path structure

ofMXSP.

B. REFORMULATION

Formulation [LSIP] is difficult to solve, as we shall see, and a reformulation is

needed. In order to see the difficulties with [LSIP], notice first that being able to solve

[LSIP] when x is continuous would be useful, because:

(a) We would be able to use a branch-and-bound procedure to solve [LSIP].

-5.

(b) The relaxed problem has a solution at an extreme point of the convex hull of X,

C(X) (Bazaraa, et. al., 1993). Hence, if we relax the binary constraints x e {0,1}"

so that 0 < x < 1, and all the extreme points of C(X) happen to be in X, then we

can relax the binary constraints and still be guaranteed an optimal (binary)

solution. For instance, this would be the case when X= { x e {0,1}", lx< TQ)).

However, solving the relaxed problem isn't easy in general. Let

fi(x)= max c y so that formulation [LSIP] is equivalent to min^(x). When we relax
ye7(x) xeX

the binary constraints inX, f^x) is a concave function, because the choice of x changes

only the right-hand side of the follower's LP. Hence, we may have local optima. In fact,

the problem [LSIP] is extremely difficult to solve and even the relaxed problem is

strongly NP-hard (Hansen, Jaumard and Savard 1992).

Example 1.1

To illustrate the "bad behavior" of the relaxation of [LSIP], let the follower's

problem be represented by:

[EX1] max yi
y

+ yi

s.t. Vi <5

yi <5

yi - yi <4

-ji + yi <3

y\ £0, y2 *o,

The system's value (without any interdiction) is 10. Assume that the leader can interdict

either y>\ or y2, of course, he wishes to minimize the maximum value of yx +y2 after

interdiction. If the leader interdicts y\, the follower solves

[EXla] max yi + y2
y

s.t. yi <0

J2 <5

yi - y* <4

. -y\ + j2 <3

yi >o, y2 ^0,

and hence obtains a value of 3. In the same way, if the leader interdicts^, the value of

the system is 4. In this simple example, the optimal solution for the leader is to interdict

yi. Now, let's see what happens when we relax the binary constraint on the interdiction

variables. Let y\ be interdicted by 1 -p and y2 be interdicted by p, 0<p<l. The

parametric problem the leader solves is:

[EXlb] min fx(j>)
0<p<l

where f1{p) = max yi + y2
y

s.t. yi <5p

yi < 5(1-/7)

y\ - yi <4

-y\ + yi <3

y\ ^0, y2 ^o,

and ftip) has a global minimum at p = 0 and a local minimum at p = 1. (See Figure

1.1.) ■

-7-

flip)

5

4

3

2

1

.33 .86 1

Figure 1.1: The value of the system of Example 1.1 as a function of
p, as given by formulation [EXlb].

As we expect, fi(p) in Example 1.1 is a concave function, which is not easy to

minimize. In order to overcome this problem, we reformulate the system-interdiction

problem. The idea is to leave the feasible region of the follower independent of x and,

instead, add a penalty term in the follower's objective function for any use of interdicted

activities. The new formulation is convex, for continuous x, and a local optimum is a

global optimum, too.

We prove in Chapter HI that there exists a finite penalty multiplier v *, such that

for all v > v * the following is equivalent to formulation [LSIP]:

[LSIP-1] min max cry-xrVy
xeX yeY

where X ={xe{0X}n \Rx<r]

Y ={y|^y<b, 0<y<u}, and

V =diag(vl).

-8.

Let A(x) = max{cry-xrVy} so that [LSIP-1] is equivalent to min/2(x). The
■ ye?- ' x€X

equivalence of formulations [LSIP] and [LSIP-1] means that /2(x) = /x(x) for all xeX,

and so if y(x) Gargmax{cry-xrFy}, then xTVy = xry = 0 and /2(x) = cry(x) is not

actually a function of v.

Notice that when we relax the binary constraints in X, f2 (x) is a convex function,

and that the feasible region of the follower's problem is independent of the interdiction

plan. More importantly, from basic linear programming theory we can reformulate

[LSIP-1] to min{z \z > cry - xrVy Vy e Y'} where Y' is the set of extreme points of
xeX

y={y|yiy<b, 0<y<u}. This suggests solving [LSIP-1] with a row generation

algorithm, which is essentially Benders Decomposition (Benders 1962). In this

algorithm, the inner minimization is a subproblem that generates extreme points of 7.

The master problem is a relaxation of [LSIP-1] that approximates fix), from below, with

cuts constructed from those extreme points. Actually, this algorithm has already been

developed and applied to the max-flow network-interdiction problem (Cormican 1995).

Given an interdiction plan x and the solution y(x) of the associated subproblem,

the new cut in the master problem, z > cry(x) - xrVy(x), will be "reasonably tight," i.e.,

will give a good approximation of f2(x) for x eX,x*£,if we have a valid, but small,

penalty multiplier v. For instance, in the max-flow network interdiction case v = 1 is

always valid and gives tight cuts. However, in another system-interdiction problem, the

minimum valid value of v could be difficult to calculate. A "large enough" penalty can

be easy to define—/2(0) will work for some problems—but such a penalty can be much

-9-

larger than necessary. On the other hand, if we guess and we guess too low, we might

terminate with an incorrect solution and not know it (see Example 3.1 in Chapter III). If

we guess and we guess too high, the running time of the decomposition algorithm will be

excessive, due to the loose cuts.

The Benders decomposition algorithm is discussed in detail in Chapter II (for the

MXSP scenario) and in Chapter in (for more general system-interdiction problems).

We also develop a second decomposition algorithm, which is a variant of the Benders

decomposition that assumes no bound on the penalty multiplier v in [LSIP-1], and

describe a hybrid decomposition algorithm that is a combination of the first two. The

second and third algorithms appear to be superior to the first for MXSP.

Example 1.1 (revisited)

We can reformulate Example 1.1 in the form of [LSIP-1] and obtain an

equivalent (for p = 0 and p = l), but convex formulation. We'll do so with two

penalties, v = 2 and v = 10, to show the difficulties that a large penalty may cause. When

we relax the binary constraints, the corresponding parametric linear program is:

[EXlc] min f2(p)
0<p<l

where f2(p) = max vi + y2 - v ((1-p)y\ + pyi)
y

s.t. vi < 5

yi <5

y\ - yi ^4

-y\ + yi ^3

vi >0, y2 >0.

As can be seen in Figure 1.2, for both values of v the solution of the inner

-10-

maximization problem, as a function ofp, is convex and matches f2ip) for p = 0 and

p = 1. However, for v = 10, the relaxation is much less useful. Assume we start the

decomposition algorithm we mentioned earlier, with p = 0. The two cuts the

subproblem would produce, for v = 2and v = 10, are shown in the graph. The cut using

v = 2 gives a tighter bound on f2ip) for p = 1 and clearly that difference will become

more significant in more realistic and multi-dimensional problems. ■

fi(P), f2(P)

fiiP)
Relaxation of

formulation [LSIP-1]
v = 2 v = 10

Relaxation of
formulation [LSIP]

.1 \ .33 .86

The first cut in the
master problem for >

= 10 v = 2/

Figure 1.2: Relaxation of different formulations for Example 1.1. The
relaxation using formulation [LSIP] is concave while the relaxation using
formulation [LSIP-1] is convex. When solving formulation [LSIP-1] with
Benders decomposition, the cuts in the master problem are tighter for v = 2
compared to v = 10.

-11

C. SYSTEM DEFENSE

The system-defense problem is a natural extension of the system-interdiction

problem. When a system user expects his system to be interdicted, he may wish to

expend resources to protect that system to mitigate against the effects of interdiction.

The question SD addresses is: How should a system user (now also called the

"defender"), with limited resources, "harden" the components of his system to best

protect against interdiction, given that the interdictor will optimize his interdiction plan

with knowledge of those improvements?

Let the set of feasible defense plans for the system user be given by

G = {ge{0,l}n |Äg<h} (we assume that G is not empty). We assume absolute

protection so that gk = 1 implies that activity j is fully secured against interdiction. SD

finds the optimal interdiction strategy for the system user, g*, and the value of the system

associated with this defense plan. Formally, the Linear System-Defense Problem (LSDP)

is defined as the following problem for the system user:

[LSDP] max min max cry
geG xsX(g) yeY(x)

where G ={ge {0j}n | Hg < h},

X(g) ={xe{0A}n |i?x<r,0<x<l-g}, and

Y(x) = {y | Ay <b, 0<y < U(l-xj}.

[LSDP] can be viewed as a min-max linear system-interdiction problem where the

system user is the leader, the interdictor is the follower, and for every feasible defense

plan g, the associated value of the system is given by a solution to a system-interdiction

-12-

problem where the protected activities are invulnerable (however we assume that X(g) is

not empty for all g eG). Thus, in SD the leader interdicts the interdictor. Notice that a

linear program can no longer represent "the system." However, when the defended

system is represented by a linear program (as in our formulation of [LSDP]), we can

solve the overall system-defense problem through a nested decomposition algorithm,

using one or more of the decomposition algorithms developed for [LSIP.]

Example 1.1 (revisited)

Assuming that the system user can protect one of his activities, Vi or^, it is clear

that he should protect ji. However, in more complicated problems, devising the optimal

defense plan is much more difficult, and actually the system defense problem is NP-hard

and not known to be in NP. ■

D. OUTLINE

In this introduction, we have defined the system-interdiction problem, which is a

difFicult-to-solve bi-level mixed-integer programming problem. The continuous

relaxation of the first formulation we gave for LSIP is a concave function in the

interdiction variables, so even the relaxed problem is difficult to solve. Therefore, we

introduced a second formulation of SI that is equivalent to the first for binary interdiction

decisions, but is convex when we relax those binary constraints. The second formulation

uses a penalty term in the objective function that prevents the follower from using

interdicted activities. Unfortunately, this formulation may not be useful if a valid,

sufficiently small penalty multiplier, is hard to find.

In Chapter II we develop three decomposition algorithms for solving the

problem of Maximizing the Shortest Path (MXSP) in a directed network. Computational

-13-

results for those three algorithms and an MIP formulation of the problem are provided,

and practical techniques to speed convergence of the decomposition schemes are

described and demonstrated.

In Chapter HI, we extend the models and methodology of Chapter II to solve

interdiction problems defined on systems modeled as general linear or integer programs,

not just networks. We use:

(a) A decomposition algorithm that is based on a finite and "good" penalty multiplier,

(b) A decomposition algorithm that assumes no finite bound on the multiplier, or

(c) A decomposition algorithm that is a hybrid of first two.

In Chapter IV, we discuss the system-defense problem, and solve it using a

nested decomposition algorithm. Throughout the Chapter, we use the problem of

Defending the Shortest Path (DSP) as an illustrative example, but the approach and

development is valid for general SD as well. Computational results for DSP are given,

and practical techniques to speed convergence of the nested decomposition schemes are

demonstrated.

Finally, Chapter V extends our approaches further, to one example of "stochastic

system interdiction," a case where interdiction successes are uncertain. As expected, this

problem is harder to solve and so we suggest several approximation algorithms that are

based on the three decomposition algorithms developed earlier. Preliminary

computational experience is reported for a stochastic shortest-path network-interdiction

problem, but the suggested algorithms can be used for other stochastic system

interdiction problems, too.

.14.

H. SHORTEST-PATH NETWORK INTERDICTION

Network-interdiction problems involve two opposing forces, a leader and a

follower, who are engaged in a warlike conflict. The follower operates a network so as to

optimize his objective function which involves moving a supply convoy through the

network as quickly as possible, or maximizing the amount of materiel transported

through the network subject to capacity constraints, etc. The interdictor tries to restrict

the follower's achievable objective value by interdicting (attacking) arcs so as to destroy

those arcs entirely, or increase their effective length, reduce their capacity, etc. The

purpose of this chapter is to develop new models and solution methods for the problem of

interdicting a road or other transportation network in order to maximize the (post-

interdiction) shortest-path length between two specified nodes.

The topic of network interdiction has received some attention over the years,

initially with military applications. For instance, McMasters and Mustin (1970) and

Ghare et cd. (1971) develop methods for interdicting a capacitated supply network to

hinder the movements of enemy troops and materiel. More recently, research was

triggered by drug interdiction efforts (Wood 1993, Washburn and Wood 1994) and by the

need to assess the vulnerability of information networks to interdiction (Grötschel et cd.

1992, Medhi 1994).

The network-interdiction problem we focus on is Maximizing the Shortest Path

(MXSP) (Fulkerson and Harding 1977, Golden 1978). In this problem, a "network user,"

i.e., the follower, wishes to traverse a path of minimum length (or minimum time,

minimum cost, etc.) between two specified nodes, s and t, in a directed network. But, by

first attacking the network using limited resources, an interdictor, i.e., the leader, can

-15-

destroy certain arcs, or increase the effective length of certain arcs, and thereby increase

that minimum length. MXSP is the interdictor's problem: Subject to a limited

interdiction budget (and possibly other restrictions), interdict arcs in a network so as to

maximize the shortest-path length between nodes s and t.

In our definition of MXSP, arc interdiction involves a binary decision with known

resource consumption and assured success. The k-most-vital-arcs problem (Corely and

Shaw 1982, Malik et al. 1989) is a special case of MXSP where the interdictor seeks to

destroy exactly k arcs to interdict the network most effectively. Since that problem is

NP-complete (Ball et al. 1989), it follows that MXSP is NP-complete.

The Är-most-vital-arcs problem has received limited attention and we are not aware

of effective algorithms for solving it. Malik et al. (1989) suggest a potentially effective

algorithm for the problem, but the algorithm has a theoretical flaw as we discuss in

Section C. Corely and Shaw (1982) suggest an algorithm for the single-most-vital-arc

problem but this problem is a very simple case of MXSP which is solvable in polynomial

time.

Unlike the £-most-vital-arcs problem, MXSP allows general resource constraints

which, most significantly, enable the modeling of different types of interdiction

resources, e.g., ground troops, aerial sorties, cruise missiles, etc. Fulkerson and Harding

(1977) and Golden (1978) have studied a simpler variant of MXSP incorporating a single

type of interdiction resource and arc lengths that increase linearly with the amount of

resource applied. We believe that our model with discrete interdiction variables is more

realistic.

16-

In this chapter, we first show how to model MXSP as a mixed-integer program

(MIP). It is intuitively clear, and later demonstrated by computation, that this MIP can be

very difficult to solve directly using LP-based (linear-programming-based) branch and

bound. Therefore, we devise three decomposition-based algorithms for MXSP and

demonstrate their computational effectiveness. The first algorithm implements a Benders

decomposition (Benders 1962) that solves MXSP much like Cormican (1995) solves a

maximum-flow network-interdiction problem. This technique converges slowly, as does

branch and bound applied to the basic MEP, when interdictions cause large local delays.

The second decomposition algorithm does not suffer as much from this problem. That

decomposition (a) simplifies the master problem of the first algorithm to a set-covering

problem (SCP), (b) improves efficiency by incorporating a greedy heuristic for the SCP

(in addition to using an exact algorithm), and (c) exploits the special structure of shortest-

path problems to gain efficiency. The last algorithm we devise is a hybrid of the first

two.

A. THE BASIC MODEL: MXSP AS A MIXED-INTEGER PROGRAM

The mathematical programming formulation of MXSP on a directed graph

G=(X,A) is:

Problem: Maximize the shortest-path length in a directed network by

interdicting arcs.

Indices: / e N, nodes in G (s is the source node, t is the sink node),

ke A, arcs in G,

k e FS(i) (k e RS(i)) arcs directed out of (into) node i,

-17-

Data: 0 < Ck < °o, nominal integer length of arc k,

0 < dk < oo, added integer delay if arc k is interdicted,

r vector of available interdiction resources,

R matrix of interdiction-to-resource conversions,

Variables: Xk =1 if arc k is interdicted by the leader; else Xk =0,

yic =1 if arc k is traversed by the follower; else yk =0,

Formulation:

[MXSP - P] max min ^T {ck + xkdk)yk

k<=FS(i) keRS(i)

1 I = S

0 ieN-s-t

1 i = /

yj.^0 VJteA

where X = [x e {0,1}^! Rx < r}, and:

(a) Node J is the source node and / is the terminal node,

(b) The set of arcs directed out of node / is denoted "FS(i)" and the set of arcs

directed into node /' is denoted "i?5(/'),"

(c) Xk =1 implies arc k is interdicted; else Xk =0,

(d) Flow-balance constraints (1) in variables y route one unit of flow from s to t; the

inner minimization is a standard shortest-path model with arc lengths Ck + Xk dk,

(e) Ck is the nominal length of arc k and Ck + dk is the length of that arc if it is

interdicted; dk is finite and comprises such factors as repair time or the length of a

local detour (the case of <4 = °° is dealt with later),

18-

(f) Rs. < r is a set of side constraints on interdiction resources; thus, X represents the

set of feasible interdiction plans (we assume that X is not empty),

(g) All data are assumed integral, and dk,Ck>0Vk GA,

(h) All solutions will be assumed to be integral since variables x are required to be

integral and extreme points of the inner minimization are well known to be

integral.

To simplify presentation, and without loss of generality, we make the further assumption:

Assumption 2.1: The interdictor has insufficient resources to disconnect s from t. ■

This assumption is innocuous and merely simplifies presentation of our algorithms.

All of the algorithms are easily modified to identify the degenerate case in which s and t

can be disconnected. The extensions of our techniques to handle undirected networks

and/or node interdiction are also straightforward.

If we fix x, take the dual of the inner minimization in [MXSP-P], make a few

simple modifications and then release x, the following MEP results:

[MXSP-D] z*= max ^t~xs
X,JC

s. t. Xj - jtt - dkxk <ck \/k = (i,j) e A

TTS=0

xel

Note that %s = 0 may be assumed because the inner minimization of MXSP has at least

one redundant flow-balance constraint (as do all network flow models containing a

balance constraint for each node). Also, note that the dual variables n are unconstrained

19-

in sign and, having reversed their signs compared to the usual convention, we may

interpret TT, as the post-interdiction shortest-path distance from s to /'.

[MXSP-D] is essentially the model explored by Fulkerson and Harding (1977)

and by Golden (1978), except that their variables x are continuous and only a single

resource constraint is allowed. Thus, that model is a simple linear program (LP).

Fulkerson and Harding (1977) suggest solving the dual of that LP which may be

interpreted as a parametric min-cost flow model. This approach does not appear to be

useful when we relax the binary constraints in [MXSP-D] because their model does not

allow any additional constraints such as x < 1.

In theory, we can solve [MXSP-D] using a standard LP-based branch-and-bound

algorithm. However, especially when possible delays dk are large, the LP relaxation of

the model is weak and this results in excessive enumeration and unsatisfactory

computation times. We use a decomposition approach instead.

B. A BASIC DECOMPOSITION ALGORITHM

Our basic decomposition algorithm to solve MXSP is a direct application of

Benders decomposition to [MXSP-P] (or [MXSP-D] as a MIP, e.g., Garfinkel and

Nemhauser 1972, pp. 135-143). Let y e{0,l}^ denote an arc-path incidence vector

corresponding to an s-t path P, i.e., yk = 1 implies arc k is in P; otherwise, yk = 0.

z(y)- 2^ckyk is the length of the path y. Let Y denote a collection of arc-path
keA

incidence vectors corresponding to a subset of all simple s-t paths in G. For simplicity,

we refer to y as "a path" and Y as "a set of paths." Also, letZ> = diag(d) and define:

■20-

Master(F)-ll Zf = max z
xeX

s.t. z<cry+xr£>y Vyef

[SP - Sub(x)] Zi = min £ (c* + **</*))>*
y fce.A

s.t. 2>*- Z^=<

keFS(i) keRS(i)

1 J = J

0 ieN-s-t

-1 i = f

j^>0 Vfce.A

Let Y denote the set of all simple s-t paths. For fixed x = £, a solution to the

inner minimization of [MXSP-P], which is [SP-Sub(x)], always occurs at a path y.

Therefore, (Master(Y)-l] is equivalent to [MXSP-P] when Y = Y. However, we hope to

solve [MXSP-P], at least approximately, by sequentially generating only a small fraction

of the extreme points of Tin a decomposition algorithm:

Algorithm 1: Basic Benders decomposition algorithm for MXSP.

Input: An instance of MXSP and allowable optimality gap s.

Output: Interdiction plan x* that solves MXSP to within s units of optimality.

Step 0: Y <- 0, z <- -oo, z <- oo, x <r- 0.

Step 1: Solve [SP-Sub(x)] for solution y with objective z$.

Y <r-Yuy.

Ifz < Z£ then x'<— x and z <- z%.

Step 2: Solve [Master(7)-1] for solution £ with objective Zj

Z <- Zf.

Step 3: If z -z > s then go to Step 1.

Step 4: x* <- x', print x* and stop.

• 21

The correctness of the algorithm, as in any Benders decomposition algorithm, is

based on the following observations:

(a) The sub-problem (which is simply a shortest-path problem here) finds an optimal

follower's reaction for a specific leader's interdiction plan £. Hence, zi gives a

lower bound on the leader's optimal solution value. This bound is finite because

of Assumption 2.1.

(b) If the sub-problem produces the same s-t path twice, the upper bound and the

lower bound must match and the algorithm terminates. If the sub-problem

continues to find new paths, the algorithm must converge in a finite number of

iterations because the number of simple s-t paths is finite. (The number of paths

and thus the number of iterations may be exponential, however.)

(c) When Y includes all simple s-t paths, [Master(F)-l] is clearly equivalent to

[MXSP-P]. Otherwise, when Y^Y, [Master(7)-1] is a relaxation of [MXSP-P]

and thus, z^ is an upper bound on the interdictor's optimal objective value. Note:

The master problem constraints defined with respect to Y are called "Benders

cuts."

(d) To tighten the relaxation of [Master(7)-1], we next introduce "integrality cuts."

Proposition 2.1: For every Benders cut z < cry + xrZ)y, the integrality cut xTy > 1 is

valid whenever z> c y.

Proof: Note that each such Benders cut implies that z* < cTy + x*TDy. Furthermore,

either x*ry = 0 or x*ry > 1. If x*Ty = 0 given that z > cry, then z* < cry + x*TDy =

-22-

cry + 0 < z, which is a contradiction. Therefore, x*ry > 1 which implies that xTy > 1 is a

valid integrality cut. ■

Corollary 2.1: For every Benders cut z < cry + xTZ)y, the integrality cut of Proposition

2.1, xTy > 1, can be tightened to xTy > 2 if z > cry + msxdkyk, it can be tightened to xry
k

> 3 if z > cry + max { dk yk+ dv yk>}, and so forth. ■
k±k'

Naturally, as z is updated in the algorithm, we may be able to tighten previously

generated integrality cuts using Corollary 2.1, too. Actually, in our implementation, we

add the cut xry > 1 even if z = cry (or xry > 2 even if z = cTy + max^y*, etc.). If the
)t

optimal solution value exceeds the current value of z, those cuts are valid. But, if those

cuts render the master problem infeasible, the algorithm can be terminated with the

incumbent x' being optimal.

We also improve the effectiveness of Algorithm 1 by not solving the master

problem to optimality. This well-known variant of Benders decomposition (e.g.,

Geoffrion and Graves 1974) is guaranteed to converge as long as every sub-optimal

integer solution y satisfies c y > z (recall that data are integral), and we do not update z

unless the master problem is solved to optimality.

Since all dk are assumed finite, Algorithm 1 does not allow the interdictor to

completely remove (destroy) an arc. To model the effect of complete arc removal, we

can solve the sub-problem with interdicted arcs eliminated, while in the master problem

we may be able to define a "sufficiently large" artificial delay (say |A/"|max|c^.) on
k

every interdictable arc to keep the Benders cut valid. But, as we shall demonstrate

• 23-

empirically, the run time of the algorithm grows very quickly with the size ofthat delay.

On the other hand, being too conservative with that artificial delay can lead to difficulties

as seen in the following example.

Example 2.1

Consider the network of Figure 2.1 and an interdictor who can remove any two

arcs from that network. One obvious optimal solution to MXSP for this network is to

interdict (s,a) and (s,b) so that the shortest s-t path has length 20. Now, let d denote the

artificial delay that is to be added to interdicted arcs and suppose that we use Algorithm

1, without integrality cuts, to solve this problem.

Initially, the algorithm finds the uninterdicted shortest path s-a-t with length 2.

Given that solution for the follower, the leader interdicts (s,a) and (a,t) and the "upper

bound" (as calculated in Step 2) is 2 + 2d, which is valid only if d > 9. In the next step

the follower finds the shortest path after (s,d) and (a,t) are removed from the network.

The solution is s-b-t, with length 12. The two Benders cuts in the master problem are:

z < 2 + dxsa + dxat from the first iteration, and

z < 12 + dxsb + dxbt from the second iteration.

Figure 2.1: Network to illustrate difficulties with artificial delays. Numbers
next to arcs are lengths.

■24-

There are four cases to consider now:

(a) If d < 5, the shortest path from the second iteration has length greater the pseudo-

upper bound from the first iteration. We conclude then that d is too small,

increase it and return to the master problem.

(b) If 5 < d < 10, the master problem objective is 12. Since the lower bound and

pseudo-upper bound match, the algorithm terminates, but with an incorrect

solution. In this case, we see no way to recognize that d is too small without

solving this NP-complete problem: Does there exist a solution to MXSP with

objective value greater than z^l

(c) If 10 < d < 18, the master problem interdicts both paths and has optimal objective

value 2+d. The third iteration of the sub-problem finds the path s-c-t with length

20, which is larger than the current pseudo-upper bound. Again, we conclude that

d is too small, increase it and return to the master problem.

(d) If d > 18, the upper bound is valid and the algorithm terminates with the optimal

solution. ■

C. A SECOND DECOMPOSITION ALGORITHM

Of course, case (b) of Example 1 is the most disturbing. To overcome this

difficulty, we offer a second decomposition algorithm. This algorithm derives from the

variant of Benders decomposition (mentioned earlier) in which the master problem is

solved for any feasible solution with objective value greater than the current lower bound.

The algorithm iterates until no such solution exists; at that point, the best solution found

must be optimal. For simplicity, we now assume that every interdicted arc is completely

■25-

removed from the network. No loss of generality arises since arcs with finite delay are

easily handled: For any arc k with dk< o° and nominal length Ck, create two parallel arcs,

k\ and k2. Arc k\ has length Ck and is interdictable, i.e., "removable." Arc k2 is non-

interdictable and has length Ck+dk.

The master problem of the new algorithm simply seeks a feasible solution with

objective greater than the current lower bound, z = maxc y.

[Master(7)-2a] Find xeX

s.t. z<cTy + xTDy Vye7

z>z + l

(Note that z > z +1 is sufficient since all data are assumed to be integral.)

Proposition 2.2: For artificial delay d sufficiently large, x is feasible to [Master(7)-2a]

if and only ifx interdicts at least one arc in every path represented by Y.

Proof: Sufficiency is guaranteed because cry > 0 and d is large enough (we can assume

d > r+1), and necessity follows because z = maxc y. ■

Instead of solving [Master(7)-2a], Proposition 2.2 allows us to solve the

following set covering problem (SCP):

[Master(7)-2b] Find xel

s.t. yrx>l Vye7

■26-

The algorithm we have just established is:

Algorithm 2: A covering decomposition algorithm for MXSP.

Input: An instance of MXSP.

Output: An optimal interdiction plan x*.

Step 0: Y <- 0, z <- -oo, z <r- oo, £ <- 0.

Step 1: Solve [SP-Sub(i)] for optimal solution y with objective value z$.

7<-f uy.

If z < z^ then x' <- £ andz <- z$.

Step 2: Attempt to solve [Master(F)-2b] for feasible solution £.

If [Master(7)-2b] is feasible then go to Step 1.

Step 3: x* <- x', print x* and stop.

Let us add a bit of insight to Algorithm 2. Each time the algorithm reaches Step

1, the network user suggests one new s-t path, the best with respect to the interdictor's

previous plan. Then, in Step 2, the interdictor tries to find a plan that interdicts all the s-t

paths that have been exposed so far, paths represented by Y. This new interdiction plan

may or may not force the network user to traverse a path longer than the current lower

bound. Once the interdictor fails to interdict all the paths in Y, he knows that he cannot

force a shortest-path length that is longer than the longest path in Y. But, this length is

exactly the current value of z, so he concludes that no better interdiction plan than the

incumbent x' exists, and the algorithm terminates.

Algorithm 2 is similar to the algorithm for the &-most-vital-arcs-problem

•27-

suggested by Malik et al. (1989). There, paths with non-decreasing lengths in the

uninterdicted network are enumerated and interdiction is attempted until the / shortest

paths cannot be feasibly interdicted. In our setting, this means that an algorithm that

produces the /"'-shortest path in the original network (e.g., Katoh et al., 1982) replaces

Step 1. However, the algorithm in Malik et al. assumes that an interdiction plan that

interdicts the / shortest paths must correspond to a cutset in the sub-network created from

the union of the arcs and nodes from those paths. Consequently, a solution x*

corresponds to a minimum-cardinality cutset, which can be identified by solving a

maximum-flow problem in the sub-network using arc capacities of 1. But, as illustrated

next, the assumption is invalid—the master problem just described is a restriction of the

correct one—and thus that procedure must be viewed as a heuristic.

Example 2.2

Consider the network of Figure 2.2, with all arcs of length 1, and suppose that the

interdictor can remove any two arcs from the network. Clearly, the optimal interdiction

removes arcs (s,c) and (c,t) and forces a shortest path of length 4. But, deleting two arcs

crossing any cutset leaves a shortest path of length 2 or 3. ■

-28-

The rest of this section describes several enhancements to Algorithm 2 to

improve efficiency.

When the set X includes only a single resource constraint, say rTx < r0, we can

solve the following master problem in place of [Master(7)-2b]:

| Master(Y) - 2c 1 min rrx

s.t. yrx>l VyeF

xe{0X\lAl

[Master(7)-2c] is a standard set-covering problem (SCP) and, if it has an optimal

objective value less than or equal to r0, then [Master(7)-2b] is feasible. Of course, we

need not solve [Master(7)-2c] to optimality, but just until rTx < r0, and this suggests the

use of efficient heuristics. We use a version of the simple greedy heuristic for SCPs

discussed by, among others, Nemhauser and Wolsey (1988, pp. 466). Many other

heuristics exist, (e.g., Beasley 1990, Caprara et al. 1996), but this one is easy to

implement and provides more-than-adequate performance on our test problems.

Whenever we need to solve a master problem in Algorithm 2, we run the greedy

heuristic on [Master(7)-2c]. If a feasible solution, x e X, is found, we proceed to Step 1

of the algorithm. If not, only then do we resort to an exact (and slower) branch-and-

bound algorithm.

When solving MXSP, Algorithm 2 typically iterates much faster than Algorithm

1 because the master problems are much easier to solve. This is true even when potential

delays dk are small. On the other hand, Algorithm 2 typically requires more iterations

than Algorithm 1. Another problem with Algorithm 2 is that it incorporates no upper

bound, and thus, it cannot be stopped early with a near-optimal solution. To help

-29-

overcome these two difficulties, we employ a local-search procedure. With this

procedure, we can add more than one path to Y per iteration, and we can often determine

an upper bound on the optimal solution value.

Let z(y) denote the length of path y. The key idea behind the local search is that

any path y with z(y) < z may be introduced into Y without compromising validity of the

algorithm. This is true by definition of the lower bound. There are many ways to find

more than one s-t path per iteration and we use the following procedure: It is well known

that finding the shortest paths from s to all other nodes is not much more difficult than

finding a shortest s-t path, so we first compute the former paths encoded using a standard

"shortest path tree" and "predecessor function" (e.g., Ahuja et al. 1993, pp. 106-107). Let

P(f)=(s, z'i, 72, ••• ,in, t) be a shortest s-t path and let P(j) be a shortest path to node j. For

every node im e{z'i, h, ... , i„}, and for every arc (j,im) in the network, we build the path

(P(j), im, im+h ■■■ , *n,t), represented by its incidence vector y, and calculate the path's

length z(y). Hence, the procedure Local_Search(7) takes a shortest path tree T (derived

from a shortest-path algorithm) as input and returns a list of paths. We omit pseudo-code

for this procedure, and for Procedures Compare and Lift described below, because their

implementations are straightforward given the in-text descriptions.

Every path y returned from Local_Search with z(y) < z is introduced into Y as one

more path to be covered in the master problem. If z(y) > z, the path is stored in a special

+ +
set Y . Later, after updating z in succeeding iterations, we move any y e Y into Y if

z(y) < z. Based on Theorem 3 below, the paths contained in Y can also be used to

obtain an upper bound z on z* which then allows us to solve for e-optimal solutions.

■30.

Proposition 2.3: Let % be a set of paths such that z(y) < z for all y e 7F. Then, if

[Master(l^)-2b] is infeasible, z* <z .

Proof: If z* > z , we can feasibly interdict all paths y such that z(y) < z . By assumption

we cannot, so z* < z . ■

So, if we define the set % = fu {y € 7 | z(y) < z + s } and [Master^)-2b] is

infeasible, we know that z* < z + e and the solution £ that yielded z is s-optimal.

Our implementation of Algorithm 2 uses two additional procedures that

empirically speed convergence. The first procedure, Compare(7), returns all the "non-

dominated paths" in Y. Path yi dominates path y2 if all interdictable arcs in y2 are also

contained in yi, i.e., if every interdiction plan that interdicts yi also interdicts y2.

Essentially, Compare implements one type of test for "row redundancy" in an SCP.

Other redundancy tests are known (e.g., Garfinkel and Nemhauser 1972, pp. 302-304,

Taha 1975, pp. 316-332) but this one is easy to implement and has proven to be effective.

The second procedure, Lift(7, z), uses information about arcs with finite delays to

tighten the SCP formulation. Recall that we replace each arc k with length c* and finite

delay <4 with two parallel arcs: Interdictable arc k\ has length Ck and non-interdictable arc

k2 has length Ck + dk. Now, assume that we have a path y in 7, such that y includes arc

k\ and dk + z(y) < z. Then, a path y that is identical to y except that it includes arc k2

instead of k\ is longer, but is still shorter than the lower bound. Hence, y can be

introduced into 7. Actually, this new path dominates y and can replace it, and we have

thereby lifted the valid inequality yrx > 1 to yrx > 1. (This is, in fact, a "lift" since y <

-31-

y, yki = 1 and ykl = 0; see, for example, Nemhauser and Wolsey 1988, pp. 261-267.) The

procedure Lift(7, z) returns the set of non-dominated paths generated from 7 after such

replacements. Notice also that if we accept s-optimal solutions, by Proposition 2.3 we

can introduce y into 7 as long as z(y) = dk + z(y) < z + s. That is done by procedure

Lift(7, z+s), which returns the set of non-dominated paths from Y with z(y) < z + e.

Algorithm 2, with all enhancements is outlined below. The actual

implementation reorders certain computations for efficiency's sake.

Algorithm 2E: The covering decomposition of Algorithm 2, enhanced.

Input: An instance of MXSP and optimality tolerance s.

Output: An s-optimal interdiction plan x* for MXSP.

Step 0: 7 <- 0, 7 <- 0, z <- -oo, £ <- 0.

Step 1: Solve [SP-Sub(x)] for shortest path tree T and objective z^.Jfz<zi

then xV- ^z^z^Y <- Lift(7, z + s).

Step 2: 7+<- 7+u LocaI_Search(7).

r<_{y e r
+| z(y) < z + s }, 7+ <e- 7+- 7'.

7' <- Lift(7', z + s).

7<- Compare(7 w 7').

Step 3: Try to solve [Master(7)-2b] for optimal solution x.

If [Master(7)-2b] is feasible, then go to Step 1.

Step 4: x* <-x', print x* and stop.

-32-

It should be noted that LocaI_Search is also applicable to Algorithm 1. In fact,

an s-t path derived by any means generates a valid Benders cut for this algorithm. A cut

generated from an arbitrary path may be dominated if it contains some non-interdictable

arcs, or if the path contains a cycle. Thus, a procedure analogous to Compare is also

applicable to Algorithm 1. (Lift does not apply.) In practice, we find that Algorithm 1

with these modifications requires fewer iterations, but total solution time increases

because the master problems quickly become large and hard to solve.

D. A HYBRID DECOMPOSITION ALGORITHM

The final algorithm we suggest is a hybrid decomposition algorithm that

combines the master problems of Algorithms 1 and 2. In this hybrid algorithm,

Algorithm 3, we view the master problem of Algorithm 1 as the "basic master problem"

and let master problem constraints of Algorithm 2 serve as integrality cuts for the basic

master problem. Thus, the master problem of Algorithm 3 integrates the Benders cuts,

the integrality cuts of Algorithm 1 and the covering cuts of Algorithm 2. In every

iteration we add to the basic master problem one Benders cut, one integrality cut, and we

update the set of covering constraints in this master problem using procedures

LocalSearch, Compare and Lift.

Example 2.3

Consider a network containing s-t paths Pi and Pi, among others: P\ traverses arcs

1, 2 and 3 and Pi traverses arcs 1, 4 and 5. Those arcs have the following parameters: c\ =

3, c2 = 1, c3 = 8, c4 =4,c5= 6, d\ =3, d2 = 4, d$ = 5, d4 = 1, and d5 = 3. Suppose that Pi is

the shortest s-t path in the network, and hence is returned by the sub-problem in the first

iteration of the decomposition algorithm. Then, the Benders cut we add to the master

-33-

problem is:

Bendersi: z < 12 + 3xi + 4x2 + 5x3.

The integrality cut and the covering constraint associated with this Benders cut

are identical:

Integrality i: Xi + x2 + x3 > 1,

Coveringi: xi + x2 + x3 > 1,

both with "score" 12. (Additional cuts that might be generated by LocaI_Search are

ignored.) The score is the uninterdicted length of Pi, this value is important for later

tightening or lifting of these cuts. Note that Compare will not eliminate one of these

constraints, nor would we want it to: A lifted integrality cut is different than a tightened

covering constraint even though the base constraints are identical.

Suppose that the interdictor has enough resource(s) to interdict arcs 1, 2 and 3

together, and this is the solution (with z=24) of the first master problem, which consists

of Bendersi, Integralityi and Coveringi. Further, assume that the shortest s-t path given

these interdictions is P2 so that z = C\ + d\ + c4 + c5 = 16. In this case we can lift the

previous covering cut because interdiction of arc 1 alone cannot "push" z over the lower

bound z. (Formally, the difference between the score of Coveringi and z exceeds d\) The

cuts from the first iteration are now:

Bendersi: z < 12 + 3xi + 4x2 + 5x3,

Integralityi: xi + x2 + x3 > 1, Score = 12,

Coveringi: x2 + x3 > 1, Score = 15.

The score of Coveringi has been updated to 15, which is the length of Pi with arc 1

interdicted. (Note that we could also have lifted the basic covering cut to xi + x3 > 1, with

• 34-

score 16. In our implementation, however, we are satisfied with the first valid lift that we

find.)

The cuts from the second iteration are:

Benders2: z < 13 + 3xi + 1x4 + 3xs,

Integrality2: x\ + x4 + X5 > 1, Score =13,

Covering2: X4 + X5 > 1, Score = 16.

(Again, we ignore covering cuts potentially derived from LocaI_Search.) The score of

Integrality2 is the uninterdicted length of P2 while the score of Covering2 is the length of

P2 with arc 1 (only) interdicted. Now, suppose that the solution to the new master

problem, which consists of the two Benders, two integrality and two covering cuts, is

X!= x3 = x4 = x5 = 1 and x2 - 0. Thus, z=20 and the algorithm continues.

Suppose then, at some later iteration, z increases to 17. In this case, we can

tighten the right-hand side of Integrality 1 to 2, because to push z over z we must interdict

at least two of the three arcs in Pi. (Formally, the difference between z and the score of

Integralityi exceeds max^ep ck.) We can also lift the second covering cut, because

interdiction of arc 4 alone cannot push z over z = 17. The cuts from the first two

iterations are now:

Bendersi: z < 12 + 3*i + 4x2 + 5x3,

Integralityi: xi + x2 + x3 > 2, Score = 12,

Coverings x2 + x3 > 1, Score =15,

Benders2: z < 16 + 3xi + 1x4 + 3xs,

Integrality2: x\ + X4 + X5 > 1, Score = 16,

Covering2: *5>1, Score =17.

-35-

The algorithm may or may not halt now depending on the other cuts that have

been generated and the value of z obtained after solving the current master problem. ■

In practice, when using a single interdiction resource constraint, we do not use

Benders cuts in early iterations. Instead, we heuristically solve the set-covering master

problem of Algorithm 2 to suggest a new interdiction plan, as long as this is easy to do.

Once the covering problem becomes difficult, or when we want to establish or update an

upper bound, we solve the complete, hybrid master problem. If the problem is infeasible,

or the value of the objective function (the new value of upper bound) matches the value

of the lower bound, we are done. Otherwise, we proceed with the algorithm using the

solution from the hybrid master problem.

E. COMPUTATIONAL EXPERIENCE

We use a set of random problems here to test the algorithms we have constructed.

Several network structures are used, specified as follows:

(a) There is one source node s and one sink node t.

(b) There are mxn "inner nodes," arranged in a grid of m rows and n columns.

(c) There is an arc from s to all (inner) nodes in the first column, and there is an arc

from all (inner) nodes in the last column to t. None of these 2m arcs may be

interdicted.

(d) An arc exists from each node in row r and column c, i.e., in grid position (r,c) to

the nodes in positions (r+l,c), (r-l,c), (r,c+l), (r+l,c+l) and (r-l,c+l), assuming

that nodes exist in these positions. All of these arcs are interdictable. Figure 2.3

-36.

gives an example of a test network with 9 = 3x3 inner nodes,

(e) The basic data for each network is:

1) m and n,

2) the identity of interdictable arcs: the total number of potentially

interdictable arcs is a = (n - 2)(5m - 4) + 3m - 2, but only a specified

percentage/? of the a arcs are chosen to be interdictable. Interdictable arcs

are chosen at random; and

3) ro, the total interdiction resource available. (We assume single type of

interdiction resource.)

-► Cannot be interdicted
■>• Potentially interdictable

Figure 2.3: Example of a 3x3 network for computational tests.

(f) The randomly generated, integer data for arc k are:

1) Cjt, uniformly distributed on [l,c],

2) when k is identified as interdictable: <&, uniformly distributed on [l,d\,

and

3) when k is identified as interdictable: ru, uniformly distributed on [l,r].

-37-

Our algorithms are programmed in C using the CPLEX version 5.0 callable

library (ILOG 1997) for exact solution of master problems, when needed. CPLEX is also

used to solve [MXSP-D] directly. Default solver options are used except that "variable

selection strategy" is set to "branch based on pseudo reduced cost" when solving the

master problem in any of the decomposition algorithms. All computation is performed

on an IBM RS-6000 model 590 computer with 512 megabytes of RAM. All running

times displayed are averages across ten networks of identical topology, but with different

random arc attributes.

Note that in Algorithms 1 and 3, we do not solve the master problem to

optimality, but rather for a feasible integer solution £ that yields z > z. Experience

indicates that, when the master problem becomes difficult, it is best to stop with the first

such incumbent solution. On the other hand, the first incumbent does not usually

generate a "good" cut in early iterations. Our implementation exploits this experience

using a simple rule: If we have not solved the master problem to optimality in three

seconds, we stop if the incumbent has z > z, or else we continue until we find such an

incumbent or until the master problem is proven infeasible.

Table 1 shows results for problems 1-4. Overall, Algorithm 3 has the best

running times and can be 40 times faster than solving [MXSP-D] directly by branch and

bound. Algorithm 2 is fastest for smaller instances (but without upper bound

information during execution). Algorithm 1 is the slowest of the four procedures. We

would like to emphasize a few points:

(a) Varying arc attributes while holding the network topology and algorithm fixed

can lead to widely varying solution times: Compare means and standard

-38-

deviations for the running times. In the larger networks, the fastest run (among

the 10 different runs) may be 100 times faster than the slowest. We are still

investigating ways to reduce the running times of the longer-running problems.

[MXSP-D] Algorithm 1 Algorithm 2E Algorithm 3

Problem r0 To So T, Si Ni P, T2 S2 N2 P2 T3 S3 N3 P3

1

2

3

4

20

30

40

50

107 77

978 1215

(7) -

110 115 51 102

(6) - - -

2 1 21 320

25 18 36 690

650 560 57 1205

(5) - - -

2 1 20 315

33 36 36 630

220 185 51 1220

(7) - - -

Table 2.1: Computational results for a network with 100=10x 10 inner nodes (a=396), p=100%, c=10, rf=10
and r=5. The numbers in parentheses represent the number of problems solved to optimality, out of 10
cases, within 3600 CPU seconds.

Legend: T* -Run time in CPU seconds for Algorithm h.
(0 = branch-and-bound on [MXSP-D], 2=2E)

Sk - Standard deviation in CPU seconds of T*
Nj, - Number of iterations for Algorithm h.
P;, - Number of constraints in the master problem when the algorithm h terminates.

(b) All the algorithms are very sensitive to ro, the total available interdiction resource.

Running time typically increases rapidly as ro increases from a small value but

then starts decreasing for sufficiently large values, beyond those displayed here.

(Variations in run times occur with changes in other data, but the basic trend

remains.) This makes sense since increasing interdiction resource allows more

combinations of arcs to be interdicted, up to a point, but then for sufficiently large

r0, all or nearly all arcs can be interdicted, and the problem becomes relatively

easy.

-39-

(c) In all problem instances, all of the algorithms find good solutions quickly: Most

of the running time is spent proving, or trying to prove, optimality.

(d) Table 2.2 displays results from runs designed to explore the sensitivity of the

algorithms to network shape. The decomposition algorithms prefer "tall

networks," like the 12x8 network, over "long networks" like the 7x14 network.

This tendency may result from the greater number of paths in a long network, the

potentially greater number of constraints in the corresponding master problems,

and because there is a positive correlation between the number of potential

constraints and the actual number needed to generate a tight master problem.

However, when not all of the arcs are interdictable (problems 8 and 9), the

decomposition algorithms handle long networks quite well (perhaps because there

are fewer potential constraints in the master problem). Branch-and-bound for

[MXSP-D] seems to perform better on long networks.

[MXSP-D] Algorithm 2E Algorithm 3

Problem m*n a P To So T2 S2 N2 P2 T3 S3 N3 P3

5 12x8 370 100% 415 665 1 1 18 195 1 1 18 240

6 8x12 382 100% 350 375 140 130 45 1075 100 70 43 1125

7 7x14 405 100% 182 210 (8) - (8) - - -

8 10x20 876 50% 98 135 30 51 40 495 58 83 38 535

9 10x40 1796 25% 85 140 20 24 55 400 62 90 52 480

Table 2.2: Computational results for networks with different network shapes, with r0=25, c=10, d=\Q
and A^5. The total number of potentially interdictable arcs is a and the percentage of interdictable arcs
from a is p. See Table 1 for other definitions.

-40-

It may be possible to improve computation times substantially by settling for a

slightly less-than-optimal solution. So, we next repeat the tests on particularly difficult

problems, problems 3, 4 and 7, but allow a 5% optimality gap. Results are displayed in

Table 2.3. (Optimality gaps were described previously in absolute terms. Here, an

allowable gap of g% means 100(z-z)/z < g.) Indeed, run times can be significantly

shortened.

[MXSP-D] Algorithm 2E Algorithm 3

Problem To So T2 S2 N2 P2 T3 S3 N3 P3

3 850 810 233 183 43 1070 114 77 40 1075

4 (7) - (7) - - - 960 815 56 1620

7 48 37 (9) - - - 112 127 41 1770

Table 2.3: Computational tests on problems from Tables 1 and 2 with a 5% optimality gap allowed. See
Table l's legend for definitions.

In Table 2.4 we compare the algorithms for the case in which an interdicted arc is

actually removed from the network. We fix the cost of interdiction to one unit of

resource per arc, so we are actually solving the £-most-vital-arcs problem for k=5 and

£=10 in 7x7, 10x10 and 14x14 networks. Note that for standard branch and bound

solving [MXSP-D] and for Algorithm 1, we use artificial delays of d=5 and d=10.

However, d=5 is often too small and yields incorrect solutions while d=10 results in long

run times. Branch and bound is the slowest algorithm on these problems, and Algorithm

2 is the fastest by a substantial margin. Results for Algorithm 3 are omitted since that

algorithm is slower than Algorithm 2. (We can view Algorithm 3 as Algorithm 2 with

Benders cuts added in the master problem. But, these cuts are weak for large d, do not

• 41-

add much information to Algorithm 2's master problem and mostly serve to hinder

solutions.) The table demonstrates the sensitivity of run times to network size and k.

Problem k m^n a

[MXSP-D] Algorithm 1 Alg.2E

d=5 d=10 d=5 d=l0

8 5 7x7 188 2.6 [7] 20.3 1.3 [7] 2.8 0.2

9 10 7x7 188 70.4 [4] (5) 46.6 [5] 180.1 3.5

10 5 10x10 396 28.0 [6] 155.6 4.9 [6] 14.9 0.4

11 10 10x10 396 1334.0 [5] (0) 137.8 [6] 960.2 21.3

12 5 14x14 860 103.7 [9] 1353.0 14.6 [9] 43.7 1.7

Table 2.4: Results for the fc-most-vital-arcs problems. Numbers in parentheses are the number of problems
solved, in 10 trials, within 3600 CPU seconds (each). In the columns under d=5, numbers in brackets are
the number of problem solved correctly, out of the 10 trials. Numbers not in parentheses or brackets in the
"algorithm columns" are CPU seconds averaged over 10 trials.

Legend: k - Number of arcs the interdictor may interdict
(Every arc is potentially interdictable.)

d - Artificial delay. (Other data as in Tables 1-3.)

F. CONCLUSIONS

This chapter has discussed a shortest-path network-interdiction problem, MXSP,

on a directed network. The objective of "the interdictor" is to attack (interdict) network

arcs, using limited resources, so as to maximize the length of a shortest path between two

specified nodes. Interdiction of an arc increases its effective length, or destroys the arc

making it impassable. The ultimate purpose of the interdiction is to slow the movement

of the "network user" through a road or other transportation network.

-42-

MXSP is an NP-complete, max-min problem. We show how to formulate the

problem as a mixed-integer program (MIP) but develop decomposition techniques that

typically solve test problems much more efficiently than does LP-based branch and

bound with the MIP. Our first technique applies Benders decomposition with a standard

master problem and shortest-path sub-problems, but the second decomposition uses a

unique set-covering master problem. A third decomposition algorithm is a hybrid of the

first two. Special techniques, including integrality cuts for the master problem and local

search to generate more than one Benders cut per iteration, significantly improve

efficiency over naive implementations of the decompositions. Numerous avenues are

open for further research. These are discussed in Chapter VI, Conclusions.

It is clear that our techniques may be generalized to "system interdiction

problems," as we shall demonstrate in next chapter. Later, we use these generalizations

to solve a "system-defense problem," in particular, the problem of hardening a road

network against attack; see Chapter IV. The issue of uncertainty in interdiction success

for MXSP is discussed in Chapter V.

.43.

-44-

HI. THE SYSTEM-INTERDICTION PROBLEM

The mathematical study of interdiction has, until now, focused on "network

interdiction" in which an enemy's supply lines, modeled as a network, are efficiently

disrupted by attacking network components, e.g., bridges, roads, rail lines, etc. The

purpose of this chapter is to generalize the network-interdiction techniques of Chapter II

to handle the interdiction of general systems, for instance, a segment of an economy that

is producing war materiel.

Our basic system-interdiction model assumes that the interdictor makes resource-

constrained, binary interdiction decisions to attack a system whose optimal operation is

modeled through a mixed-integer linear program. We suggest solving this model using

extensions of the three decomposition algorithms developed in Chapter n. We then

extend those three decomposition algorithms even further, to solve a more general

system-interdiction problem, where the optimal system operation is modeled through an

even more general optimization problem.

A. WHEN SYSTEM OPERATION CAN BE MODELED WITH A MIXED

INTEGER (LINEAR) PROGRAM

In this section, we assume that the optimal solution of the follower's system can

be adequately modeled through the optimization of an MEP. Let U= diag(u). Then, the

Mixed-Integer Linear System-Interdiction Problem (MILSIP) is defined to be the

following leader's problem:

■45-

[MILSIP] z* = min f^x) where fx (x) is defined by
xeX

[M-Sub(x)-1] /i(x)= max cry
yey(x)

and X ={xe{OA}n |i?x<r},

Y(x) ={y|^y<b, 0<y<C7(l-x),yey7iVT},

where c,y,ue9T, c,b e$Rm, Ae9tmxn and 1^ represents integer (or binary)

restrictions on none, some or all of the variables y. With the exception of the set YINT,

formulation [MILSIP] is equivalent to formulation [LSff], described in Chapter I.

Thus, Xj = 1 means that activity j is interdicted, and that changes the upper bound on}/,

from Uj to 0. For notational simplicity, this model assumes that every activity is

potentially interdictable but, in practice, certain activities will be off-limits, inaccessible

or otherwise unavailable for interdiction. A more significant assumption for modeling

purposes is:

Assumption 3.1: The set Xis not empty and the inner maximization is feasible for every

interdiction plan x. ■

One can imagine more complicated problems where the interdictor's actions

affect more than one activity at a time, or where those actions change the costs of the

follower's activities or his available resources. The following proposition shows that

[MILSIP] can be modified to handle such situations.

• 46-

Proposition 3.1: Let

[MILSIP-1] min max cry-xrVy
xeX yeF(x)

where X = jx e {0,1}" Äx < rj, and

F(x) = {ye9tÄ|iy£b-2i£,()£y,yes}

where By > 0 V/j. Then, [MELSIP-1] ca« &e transformed into formulation [MLSIP].

Proof: See Appendix B. ■

Remark: The restriction By > 0 is acceptable, because we don't expect that an

interdiction would relax any of the system's constraints.

We would like to solve [MILSIP] with Algorithm 1, the Benders decomposition,

but in order to do so we need to reformulate the problem. In Benders decomposition the

feasible region of the subproblem is fixed, independent of the first level variables (x in

our case,) while the objective function changes at every iteration. To obtain this situation

in our case, we force the interdiction through a penalty term in the objective function,

which will ensure that the use of an interdicted activity is not cost-effective. Then, we

can leave interdicted activities free in the subproblem (their upper bounds are not affected

by x), knowing for sure that these activities will not be used in an optimal solution. In

some problems like the max-flow network-interdiction problem, however, an "exact

penalty" of 1 allows an interdicted activity to be used without compromising equivalence

of the models, at least in terms of x (Cormican et dl. 1997). The following proposition

gives us a more general result:

•47-

Proposition 3.2: When Assumption 3.1 holds, there exists v* < oo such that, for every v >

v*, formulation [MELSIP] and the following problem, with V= diag(vl), have the same

set of optimal solutions in x and y:

[MELSIP - 2] z * * = min f2 (x) where f2 (x) is defined by
xeX

[M - Sub(x) - 2] f2 (x) = max cry - xTVy

and X = {xe{0,l}M |.Rx<r},

Y ={y\Ay<b,0<y<U,yzYINT}-

Proof: First we show that for any x e X there exists v(x) such that for every v > v(x),

^(x) = ^(x), and arg max^(x) = arg max^(x). To do so, it suffices to show that
y€Y(x) yeY

(a) Every optimal solution of [M-Sub(x)-1] is feasible to [M-Sub(x)-2] with equal

objective function value—that is trivial—and,

(b) Every optimal solution of [M-Sub(x)-2] is feasible to [M-Sub(x)-1] with equal

objective function value. To show that we, need to find v(x) such that for every v

> v(x) every optimal solution y of [M-Sub(x)-2] satisfies xTVy = xTy - 0.

To show (b), define <?x=min{x y|ye7,x y>0|, Mx =maxcry-/[(x)
L J yer

(note that ^(x) is clearly bounded) and finally vx =1 + MX/SX . Then, if the optimal y

is such that xry>0, f2(x)<maxcTy-Sxvx which is a contradiction because, by
yeY

definition, max cry - £xvx < fx (x) and from (a) we know that fx (x) < f2 (x).
yer

-48.

The number of feasible solutions xeZis finite. So, let v* = max{v(x) |x eX}. ■

Corollary 3.1: MILSIP has an optimal solution where the follower's part of the solution

is a vertex of 7= { y | ^4y > b, 0 < y < u, ye INTy}. ■

Remark: Proposition 3.2 is a variation on Morton and Wood (1999). It is shown there

that fi(x) = f2(x) for all x el, when y is continuous, Kjis an upper bound on the

optimal dual multiplier for the constraint vy- < Uj(l-Xj) in [M-sub(x)-l] taken over all

xel and V= diag(7c). (Note that computing the best possible bound may require full

enumeration of the system value for every possible interdiction plan.) This approach

does not work when we allow discrete variables y.

Let V = diag(v*l). Based on Proposition 3.2 and Corollary 3.1, we can use

Algorithm 1, the Benders decomposition, with formulation [MILSIP-2]. Define:

(Master(Y)] min z
xeX,z

SJ. z>cTy-xTVy Vy e Y

and apply Algorithm 1 using this master problem and the subproblem [M-Sub(x)-2].

Furthermore, it is clear that the integrality cuts of Chapter II are valid here, too, and can

tighten the relaxation of [Master (F)] (see Proposition 2.1 and Corollary 2.1).

(Straightforward adjustments are required since MXSP is a max-min interdiction

problem, while the development in this chapter is for min-max system interdiction.)

• 49-

As discussed in Chapter II with respect to MXSP, the subproblem of Algorithm

1 finds an optimal reaction of the follower to a specific interdiction plan, which is

feasible to the leader. Hence,/2(x) gives a lower bound on the leader's optimal solution

value. The master problem includes only a subset of the follower's vertices and hence it

yields an upper bound for the leader. Moreover, the feasible region of the subproblems is

fixed, with a finite number of vertices, and in every iteration of the subproblem, there is a

solution that is a different vertex of 7. Thus, the algorithm must converge.

We can sometimes refine the penalty term to tighten the master problem. For

instance, the penalty for different activities may be different. Such a modification is

essentially what we have in MXSP, where the penalty matrix V = D represents the local

delays on each arc. Moreover, given an interdiction plan x, the penalty multipliers

v,(y) for each activity j, can be functions of the optimal solution of the subproblem

y s y(x), as long as the cut we add to the master problem, z > ^Cj-fj -^XjVj(y)yj , is
j j

valid for all x eX. (But, Vcannot be a function of x since the constraints in the master

problem would then be nonlinear.)

Fcould also have non-zero, off-diagonal entries representing second-order effects.

For instance, suppose that the two components of the system under study act "serially" so

that destroying either one is as good as destroying both, i.e., yi=yi. If that Benders cut

z<cTy+ 1x^X2}

is valid, then so is the tighter cut

v 0"
0 v

•50-

z<cTy + [xlx2]
v -5v

-.5v v

Unfortunately, Proposition 3.2 and the discussion afterward do not suggest a

general technique to determine a valid and effective penalty matrix V. Sometimes the

structure of the system suggests one, as in MXSP with finite delays, but that is a special

case. Recall Example 2.1, where we show the difficulties that an insufficiently large

penalty might cause. On the other hand, the running time of Algorithm 1 can be

excessive if we use a large penalty (compare results for d = 5 and d = 10 in Table 3.4).

Therefore, we wish to devise an algorithm for MILSIP, similar to Algorithm 2E, that

does not assume any bound on the local effect of an interdiction.

Following the arguments upon which Algorithm 2 is based, we assume large

penalty multipliers and wish to solve [Master(y)] for the first feasible solution with

objective value greater the current lower bound. This is accomplished by solving the

following set-covering problem (SCP):

[Master(Y)-l] Find xeX

s.t. I(y)rx>l VyeF

where Ij(y) = l if fj >0and 7/(y) = 0 if y,- =0. We can do so because every x

feasible in [Master(Y)-l] interdicts one of the basic (and positive) variables in every

vertex in Y, so x must be feasible in [Master(y)] and the leader's objective there

exceeds the lower bound, for v sufficiently large. In [Master(Y)-l], the interdictor tries

to interdict all the vertices thus far exposed by the follower, so "vertices" take the place

of "paths" in the discussion of Algorithm 2 in Chapter n.

-51-

Analogs of the various enhancements we have suggested for solving MXSP with

Algorithm 2 are applicable to solving MILSIP, too. To begin with, a local-search

procedure can be used to generate more than one vertex of the follower's feasible region

per iteration. For instance:

(a) If a linear program represents the follower's system, we can use the last simplex

tableau to reach some or all of the neighboring extreme points to the optimal

solution. (Reaching all neighboring extreme points could require too much work,

but a fixed computational budget could be allocated for finding some subset of

these points.)

(b) If MEP represents the follower's system and [M-Sub(x)-1] is solved by branch and

bound, feasible solutions found during the enumeration could be used in place of

a local-search procedure.

Procedure Lift in Algorithm 2 is based on the penalties dk used in Algorithm 1,

and it must be modified to accompany the flexibility in the penalty matrix for the more

general case. (If v is "very large," it is likely that Lift will have no effect.) Similarly,

procedure Compare should be modified if the penalty matrix has non-zero off-diagonal

elements. However, when we use the same diagonal penalty matrix V for all the

solutions of the subproblem, procedures Compare and Lift remain as they were in

MXSP.

Lastly, we can solve MILSIP with a hybrid decomposition algorithm, just as we

use Algorithm 3 for MXSP.

•52-

B. INTERDICTION OF EVEN MORE GENERAL SYSTEMS

We now generalize our results for interdiction of general systems, where optimal

solution of the follower's system can be adequately modeled through an arbitrary

optimization model. Thus, the General System Interdiction Problem (GSIP) is defined to *

be the following leader's problem:

[GSIP] z * = min /(x) where/(x) is defined by
xeX

[G-Sub(x)] /(x) = max g(x,y)
ye7(x)

and let y(£) = argmax g(£,y). (We assume that F(x) is non-empty, g(x,y) is bounded
yeF(z)

over Y(x) for all x GX and the argmax is always unique.)

For constructing a Benders-type decomposition for solving GSIP, essentially

Algorithm 1, we reformulate the problem as follows:

Proposition 3.3: Assume that for every x eX, w can find a scalar c(5t)and vector of

penalty multipliers v(x) that satisfy

/(£) = c(£)-v(£)r£ [3.3.1], and

/(x) > c(x)-v(£)rx Vxsl [3.3.2].

Then, z* = z** where z* is defined by [GSIP], and z** is defined by

[GSBP-1] z** = min z
z,x

s.t. z>c(x)-v(x)rx Viel

Furthermore, [GSIP] and [GSIP-1] share the same set of optimal solutions in x.

Proof: From formulation [GSIP-1], z * * = minz(x) where z(x) = max (c(£) - v(£)rx>,
xeX ieX

and conditions [3.3.1] and [3.3.2] ensure that z(x) = /(x) for all x el. ■

-53

Corollary 3.2: For every x eX suchthat v(x)rx = 0, c(i) = /(£) is necessary to

satisfy condition [3.3.1]. ■

A straightforward implementation of Benders decomposition to formulation

[GSIP-1] defines:

[Master(X)l min z

s.t. z>c(£)-v(£)rx \/XGX,

where X is a subset of the set of feasible interdiction plans. (We usually associate each

constraint with a solution of the subproblem, but this representation is equivalent.) Given

an interdiction plan x suggested by the master problem, the subproblem should find a

scalar c(x) and vector of penalties v(x) such that conditions [3.3.1-2] hold. Assume that

we have such a subproblem, denote it by [G-Sub(x)]; Then, we have established

Algorithm 1 for [GSIP]. Note that X is discrete and bounded, and therefore finite, so

convergence is guaranteed.

From Corollary 3.2, in order to validate conditions [3.3.1-2] we need to solve [G-

Sub(x)] exactly so that we know /(x) exactly. However, sometimes a sub-optimal

solution of [G-Sub(x)] is sufficient:

-54-

Proposition 3.4: Assume that for any x eX such that /(x) > z *, the scalar c(x) and the

vector of penalties v(x) satisfy

z* < c(x)-v(x)rx [333], and

f(x) > c(x)-v(x)rx Vxel [33.4].

(The multipliers need not satisfy conditions [3.3.1-2].,) And, for any ieX such that

f(x) = z*, c(x)and v(x)satisfy conditions [3.3.1-2]. Then, z*-Z** (where z is

defined by [GSIP] andz** is defined by [GSIP-1].) ■

Proof: Condition [3.3.3] ensures that z(x) > z * for any xeX such that /(£) > z *, and

for any xel such that /(x) = z *, conditions [3.3.1] and [3.3.2] ensure that z(x) = z *.

Thus, z * * = minz(x) = z*.

We now describe a possible use for the last proposition. Assume that during the

solution process of [G-Sub(x)] we know that x cannot be optimal, i.e., we find y such

that g(x,y) >z. Then, by Proposition 3.4, verifying that conditions [3.3.3-4] hold with

respect to x is sufficient to guarantee convergence. See an implementation of this idea

in Chapter IV, in Procedure Cutoff.

Now that we have established the basics of Algorithm 1 for [GSIP], we can

modify, extend and improve the techniques as we did for MXSP and MILSIP:

(a) Add all the enhancements discussed with regard to Algorithm 1, including the

integrality cuts,

(b) Derive Algorithm 2 and 2E (when the different enhancements are practical), and,

(c) Finally, derive Algorithm 3 for [GSIP].

-55.

We would like to point out that the existence of scalars and penalty multipliers

that satisfy conditions [3.3.1-2] does not require that the function /(x) be convex, or

anything else, when the set X includes only binary variables. This is so because we are

interested in the value of /(x) only at certain of the corner points of the «-dimensional

hypercube, and over these points it is possible to support any kind of function with a

linear cut. (For instance, if we know that z* > 0 we can always set c(x) = /(x) and for

every k, let vk(x) = f(x). The corresponding cut we add to the master problem,

z ^ c(x)-^XjVj(x)yj , would be valid, but useless.) However, it is usually easier to
j

find relatively good penalty multipliers when the function /(x) is convex for continuous

x, using gradient or .sub-gradient information.

In general, Proposition 3.3 and Proposition 3.4 do not provide a method to

derive the necessary penalty multipliers for Benders cuts (although the constant c(x) can

always be found by solving [G-Sub (x)]). However,, we exploit those propositions in the

next two chapters to validate penalty multipliers that we can create based on the special

structure of certain system-defense problems.

C. CONCLUSIONS

In this chapter we have shown that the techniques used to solve the shortest-path

network-interdiction problem can be used for solving interdiction problems concerned

with more complicated systems. Sufficient conditions are given to establish a Benders-

type decomposition algorithm for solving a general system-interdiction problem, too.

-56.

The construction of a useful decomposition algorithm for solving a system-

interdiction problem depends on the specific structure of the interdicted system. As

shown in this chapter, the helpful enhancements for solving MXSP we saw in Chapter H

may be applicable to other interdiction problems, as well.

In the next two chapters we use this chapter's results to construct algorithms for a

system-defense problem and a stochastic system-interdiction problem. Both cases are

based on MXSP, but just as we have shown in this chapter, the results there can be

applied to more general system-defense and stochastic system-interdiction problems.

•57-

-58

IV. SYSTEM DEFENSE - THE SHORTEST-PATH NETWORK

DEFENSE PROBLEM

When a system user expects his system to be interdicted, he may be able to

expend resources to protect that system to mitigate against the effects of interdiction. In

this section we are interested in the following question: How should a system user

employ limited resources to "harden" the components of his system to best protect

against interdiction, given that the interdictor will optimize his interdiction with

knowledge of those improvements? To answer to this question, we formulate and discuss

the general system-defense problem (SD) and suggest extensions of Algorithm 1-3 as

solution procedures.

In the United States, the importance of system defense has been underscored by

establishment of the President's Commission on Critical Infrastructure Protection

(PCCIP). The executive order that creates the PCCIP (The White House 1996) states:

"Certain national infrastructures are so vital that their incapacity

or destruction would have a debilitating impact on the defense or

economic security of the United States. These critical infrastructures

include telecommunications, electrical power systems, gas and oil storage

and transportation, banking and finance, transportation, water supply

systems,...."

The goal of PCCIP is to develop a strategy for protecting those systems against both

physical and electronic attacks. The models we propose are most suitable for studying

survivability of systems subject to physical attack.

-59-

Throughout the development of SD, we use the problem of Defending the

Shortest Path (DSP) as an illustrative example. However, the results can be easily

generalized to other and more general system defense problems.

A. DEFENDING THE SHORTEST PATH - THE MODEL

DSP is an extension to MXSP (see Chapter H), where before the leader attempts

any interdictions, the network user may harden (protect) some of his arcs against a

possible interdiction. The network user has a fixed budget for hardening arcs and any

hardened arc is considered invulnerable to subsequent interdiction. So, in DSP, the

network user first hardens certain arcs, the leader then interdicts some subset of

"unhardened" arcs, and finally the network user traverses a post-interdiction shortest

path.

We assume that the network user has limited resources and that he cannot make

his system completely invulnerable. Thus, the network user cannot completely protect

any shortest s-t path. Let the set of feasible defense plans for the network user be given

by G = {g G{0^}^' Hg < h}. We assume absolute protection so that gk = 1 implies that

arc k cannot be interdicted. DSP finds the optimal defense strategy for the network user,

g*, and the value of the system, i.e., the length of the shortest path the network user is

assured to have available for use.

Notice that for every feasible defense plan g, the associated value of the system is

given by a solution to an MXSP where the protected activities are invulnerable. And,

recall that MXSP is NP-hard. Thus, we need to solve an NP-hard problem just to

evaluate the objective function of a feasible solution to DSP. This fact leads to the

following complexity result:

-60-

Y(x) =

Proposition 4.1: DSP is NP-hard andnot known to be inNP. ■

Formally, given a graph G={N,A), DSP is defined as the following problem for

the system user:

[DSP] zD = min max min cry
geG xeX(g) ye7(x)

where G = {g e {0,1}W | #g ^ h}5

X(g) = {xe{0X}W\Rx<r,0<x<l-g}, and

y is an incidence vector for an s -1

path that is feasible with respect to x

Note that DSP is a min-max-min instance of the Linear System-Defense Problem

(LSDP), which we defined in Chapter I (since 7(x) can be represented by a set of linear

flow-balance constraints and non-negativity restrictions). For modeling purposes we have

the following assumption:

Assumption 4.1: The sets G, X(g) for all geGand 7(x) for all x

[x G{0,1}W Rx < r, 0 < x < l] are not empty. ■

DSP can be viewed as a min-max system-interdiction problem where the network

user is the leader and the interdictor is the follower. In DSP, the network user, now

called the "defender," minimizes the effectiveness of the interdictor's best possible

interdiction plan by choosing a defense plan that prevents, or "interdicts," some of the

interdictor's possible activities. This observation suggests solving DSP through a nested

decomposition algorithm. In particular, the master problem for DSP uses one of

-61

Algorithms 1, 2 or 3, except that the variables correspond to defense plans, rather than

interdiction plans, and each subproblem solves an instance of MXSP by applying one of

those algorithms.

B. NESTED DECOMPOSITION FOR SOLVING DSP

Let z(g) be the length of the shortest-path the network user guarantees by

defending with plan g. Then, the network user's problem is equivalent to min z(g).

By Proposition 3.3, to apply Algorithm 1 to DSP, it suffices to have for any

given defense plan g a constant c(g) and a vector of penalties v^ such that:

(a) z(g)>c(g)-gTVDx(g) VgeG,and

(b) z(g) = c(g)-gTVDx(g),

where VD = dizg(yD), and x(g) is the optimal response of the interdictor to g.

Since grV^x(g) = 0 f°r a^ § e G (the interdictor cannot interdict a protected

arc), based on Corollary 3.2 we must set c(g) = z(g) = cry(x(g)), where y(x(g))

denotes the shortest-path response of the network user given x(g). Thus, we can

calculate c(g) by solving the MXSP associated with defense plan g. (For simplicity, we

assume that y(x(g)) and x(g) are unique, but all results in this chapter can easily be

generalized to allow multiple optimal responses.)

Assuming the existence of a valid penalty vector v^, we can solve DSP through

Nested Algorithm 1 (denoted by NA-1) where the master problem and subproblem are:

[D-Master(G)] z A = min z

s.t. z>cTy(x(g))-gTVDx(g) VgeG

■62-

[D - Sub(g)] zs = max min cry
g xeZ(g) yey(x)

where X(g) ={x e{04}^' |fo<r,0<x<l-g}, and

Y(x) =
y is an incidence vector for an s -1

path that is feasible with respect to x

where G is a subset of all the possible defense plans.

At every iteration of the decomposition algorithm, the master problem suggests a

new defense plan g and update zD, and the subproblem solves the system-interdiction

problem associated with g, adds the solution to G, and updates ZD , if appropriate. (The

subproblem is simply an MXSP which is solved with Algorithm 1, or 2 or 3.) If the

solution of the master problem or the subproblem is ever repeated, we must have

ZD = zD and the algorithm has converged. Therefore, the algorithm is theoretically

guaranteed to converge, if the number of possible interdiction plans or defense plans is

finite.

The remaining question is, of course, how to determine a valid penalty vector \D.

We will answer this question for DSP, as well for the more general LSDP, under the

following assumption.

Assumption 4.2: The feasible set of interdiction plans, X, is "closed" in the sense that

any interdiction plan that is apart of a feasible interdiction plan is feasible too.

This assumption is reasonable if interdictions consume non-negative quantities of

resource and do not generate additional resource.

• 63-

Proposition 4.2: Let VY = diag(v) be a valid penalty matrix for a linear system

interdiction problem LSIP:

[LSIP] Zr = min max cry
xeX yer(x)

where X = [x e{0,l}" | Rx < r}, and

y(x) ={y\Ay<b, 0 < y < U(l - x)}.

z'.e., (fty Proposition 3.2) [LSff] ara/ [LSIP-1] have the same set of optimal solutions

and the same objective function value, where:

[LSIP-1] z7= min max cry-xr^y
xeX ye7

where X = [x e {0,1}W | Rx < r}, and

Y = {y\Ay£b, 0<y<C7)}.

Also, let [LSDP] be the system-defense problem associated with [LSIP]:

[LSDP] zD = max min max cry
geG xeX(g) ye7(x)

where S ={ge{0,1}" |Hg<h},

X(g) = {xe{0,l}w |i?x<r,0<x<l-g}, and

Y(x) = {y |Ay <b, 0 <y < U(l-x)}.

Then, when Assumption 4.2 holds, VD = Vz is a valid penalty matrix for solving SD with

algorithm NA-1.

Proof: By Proposition 3.3 and Corollary 3.2, it is sufficient to show that for all x eX

and geG, zD(g) = cry<cTy(x) + gTVIx where y = y(x(g)). Let Xg be the

interdiction plan that interdicts an activity only if it is .interdicted by interdiction plan x

• 64-

and not protected by g. Assumption 4.1 and the construction ensure that Xg eX(g).

Clearly, cry(Xg) > zD(g). Now, y(Xg) e 7(x) and due the optimality of y(x) in the inner

maximization in [LSIP-1] that is associated with x, we must have

cry(x) > cry(Xg) - xry7y(Xg). Notice that (xTVIy(xg))k > 0 can happen only when

y(xg)/fc > 0and % = 1, but that implies gk=xk=l. So, xrV7y(Xg) = grV^y(Xg), and

cry(x) + gr\^y(Xg)>cry(Xg). This finishes the proof because cry(Xg)>zD(g), and

so cry(x) + grVzy(xf) > zD(g), too. ■

Corollary 4.1: Proposition 4.2 holds even when some or all of the variables y

(the system's fundamental variables) are restricted to integer values, since nowhere in the

proof of that proposition is y is required to be continuous.

To better understand Proposition 4.2, consider its meaning in DSP. In this case,

interdicting an arc k increases the length of the arc by dk, and hence cannot increase the

length of the shortest path by more than dk. In the same sense, protecting this arc cannot

decrease the shortest path by more than the difference between the original length of the

arc and its length after interdiction, namely dk. Indeed, Proposition 4.2 proves that

VD=D, where D=diag(d), will work.

We now focus on [D - Sub(g)] in NA-1 for DSP. We might need to solve this

problem many times and so it may be useful to have some kind of a "warm start," that

uses information from previous iterations. When solving [D-Sub(g)], the master

problem is:

-65.

[Sub(g)-Master(Y)] z$ = max z
x xeX(g)

s.t. z<cry + xrDy VyeY

Notice that all the cuts of the form z ^ cTy + xTDy are valid independent of the defense

plan. Thus, as a warm start, we can begin a new iteration of the algorithm with the set Y

from the end of the previous iteration.

In NA-1 we also incorporate Procedure Cutoff. Recall that the smallest objective

values from the subproblems (the interdictor's problem) solved so far is an upper bound

on zD, denoted by ZD ■ In consecutive iterations, we can terminate solving a subproblem

when, given g, the subproblem finds a sub-optimal solution x(g) e X(g) with optimal

response y(x(g)) such that cry(x(g)) > ZD • This technique uses Proposition 3.4: Once

we recognize that the current defense plan g is not optimal, the new cut generated from

the subproblem need not be tight at g. Thus we stop solving the subproblem with a sub-

optimal solution x(g), add x(g) to X and solve again the master defense problem.

Convergence is guaranteed because the new Benders cut, z > cry(x(g)) - grWx(g)

ensures that g can no longer be the optimal solution of the master defense problem.

(Recall that the solution of the master defense problem z% is a lower bound. If g were

still optimal, we would have a contradiction since we cannot have

z± > cry(x(g)) - grPfc(g) > ZD .)

Nested Algorithm 2E, denoted by NA-2 and derived from Algorithm IE, can be

used to solve DSP (and other LSDPs) as well. In the highest level, the system user tries

-66-

to prevent interdiction plans suggested by the interdictor. For each new defense plan the

interdictor solves the interdiction problem with Algorithm 2E. When the system user

fails to prevent all the interdiction plans suggested so far by the interdictor, the algorithm

terminates. The best defense plan the system user has tried until now is an optimal

defense plan. The algorithm must converge if the number of possible interdiction plans

or defense plans is finite.

Recall that Algorithm 2E includes several special procedures, namely

Local_Search, Compare and Lift. The concept of local search in DSP translates into

the generation of more than one interdiction plan (to be covered by a defense plan) per

iteration. Fortunately, when we solve each subproblem we are actually suggesting

interdiction plans and evaluating their objective function values (shortest-path lengths

given the interdiction). We can keep this information and every interdiction plan with

objective value higher than zD (when the interdiction plan was exposed or after the

lower bound was updated), can be introduced into the set of interdiction plans to be

covered by any new defense plan.

Procedures Compare and Lift, as described in Chapter II with respect to MXSP,

apply to DSP with essentially no change.

In NA-2 we incorporate Procedure Cutoff just as we do in NA-1. This procedure

is helpful when we have a good heuristic for the interdictor's problem, and we do have

such a heuristic when the interdictor has a single resource constraint. In this case, we can

solve the interdictor's master problem as an SCP ([Master(y)-2c] in Chapter U), and we

can run Algorithm 2E as a heuristic by solving that master problem using only the

greedy SCP heuristic.

■ 67-

Last, as we suggested for NA-1, we can employ a warm start in NA-2 using

information from previous iterations. This may speed the convergence of the inner

Algorithm 2 used to solve the subproblem. Recall that at the end of Algorithm 2E we

have two sets of s-t paths. Those sets are Y and Y* where Y* is a set of "reserve

paths." We can merge these two sets and use them as a starting reserve set for the next

iteration of the inner covering algorithm used to solve the subproblem. By doing this, we

may require fewer iterations to generate a list of extreme points in Y that the interdictor

cannot cover, and thus solve the subproblem using fewer iterations.

Unfortunately, computational experience indicates that the effort involved with

the warm start is not always worthwhile. In MXSP we are able to generate paths very

quickly, but we drop dominated paths and lift others, so the actual set Y at the end of the

algorithm is only a small subset of the paths that were generated during the course of the

algorithm. Therefore, if we want to save all the original paths, extra work is needed; it

may be simpler and faster to regenerate those paths in subsequent iterations.

So far, we have discussed two nested decomposition algorithms for solving DSP,

NA-1 and NA-2. In should be clear that we can also establish an analogous version of

Algorithm 3, Nested Algorithm 3 (NA-3). Given the above discussion creating this

algorithm is straightforward and we omit any further description.

68.

C. COMPUTATIONAL EXPERIENCE

To test the algorithms we have constructed, we use the same structure of the test

problems of Chapter H The only additional parameters are the total defense resource

available #o(we assume a single defense resource) and the defense resource needed to

defend each arc k, namely hk, which is integer and uniformly distributed on [1,A].

Algorithm NA-1 is tested with procedures Warm_Start and Cutoff. Algorithm NA-2 is

tested only with procedure Cutoff. We do not test NA-3 here because for the amount of

interdiction resources examined, Algorithm 2E and Algorithm 3 give similar results (see

Table 2.1).

Table 4.1 shows the average results across 10 problems for 3 different

combinations of defense and interdiction resources. For instance, in NA-2 problem set

3D, the master defense problem includes 535 cuts on average, each one representing an

interdiction plan. The algorithm generates those 535 interdiction plans while solving

only 265 interdiction problems, because of the Local_Search procedure. Moreover,

those 155 interdiction problems are solved in 440 CPU seconds, even though a single

interdiction problem with 30 units of interdiction resources requires 25 seconds CPU on

average (see Table 2.1 problem set 2.) The time improvement factor is almost 10, and is

a result of procedure Cutoff.

• 69-

Algorithm NA-1 Algorithm NA-2

Prob Ao >b Tt Si N? N; T2 S2 NJ NJ PD r2

ID 10 20 325 60 40 140 33 17 65 1210 155

2D 15 20 475 175 72 180 75 70 135 1670 305

3D 10 30 - - - 440 265 155 3375 535

Table 4.1: Computational results for the shortest-path network defense problem, with 10x10 inner nodes
(a=396), c=10, d=10, r=5 and/z=5.

Legend: ;

Nl

Running time in CPU seconds for Algorithm NA-i.

Standard deviation in CPU seconds of T,-.

Number of iterations in the master defense problem in NA-z'.

Total number of iterations in the master problem of the sub-
problem (the interdiction problem) in NA-z'.
Number of interdiction plans (i.e., cuts) in the master defense
problem in NA-2.

In NA-1 we can see the advantage of procedure Warm_Start, too. In NA-1

problem set 2D, we solve 72 interdiction problems on average, with total of 180 master

iterations in the interdiction problems. On the other hand, when we solve only one

interdiction problem, we need 51 iterations on average (see Table 3.1). Thus, every new

defense plan requires, on average, only 2 iterations in the interdiction problem, due to the

Warm_Start and Cutoff procedures. Those 72 interdiction problems are solved in 475

CPU seconds while a single interdiction problem requires 110 CPU seconds (see Table

3.1). Therefore, the overall time improvement factor is more than 15.

■70-

D. CONCLUSIONS

The system-defense problem that we first defined as a natural extension for the

system-interdiction problem, turns out to be a system-interdiction problem in itself,

where the defender interdicts the interdictor's system. This observation let us solve the

problem of defending the shortest path with nested decomposition algorithms.

Fortunately:

(a) We can use the fact that the defender interdicts a system-interdiction problem, to

find valid penalty multipliers that are needed in Algorithm 1,

(b) The enhancements included in Algorithm 2E are applicable here, too, and

(c) Every subproblem solves a system-interdiction problem with a decomposition

algorithm, but solving k subproblems doesn't require k times the time that one

problem requires, due to Warm_Start and Cutoff procedures we include in the

nested decomposition.

-71.

■72-

V. STOCHASTIC SHORTEST-PATH NETWORK INTERDICTION

Uncertainty may play a key role in some interdiction scenarios. For instance, the

interdictor may have only limited intelligence on the system he attacks, and the success

of interdiction attempts may be uncertain. Thus, the interdictor must determine his

actions with incomplete information about the current state of the system and/or how the

system will "react" after interdiction. We take an obvious approach to modeling

stochastic situations: We assume that the interdictor has a measure for the expected value

of the system after interdiction, and that he wishes to degrade this measure as much as

possible.

Throughout the chapter we focus on the max-min stochastic shortest-path

network-interdiction problem, S-MXSP, where interdiction success is uncertain. We note

that Cormican et al. (1998) have studied one stochastic network-interdiction problem,

with a different objective than MXSP, where other network data may be uncertain, too.

However, we assume that all network data are known exactly. We show how the results

of Chapter HI can be used to establish decomposition algorithms for solving such

stochastic network-interdiction problems, exactly or approximately. The approach can be

used for solving other stochastic system-interdiction problems, too.

A. THE MODEL

The mathematical programming formulation of S-MXSP on a directed graph

g=(Af,A) is:

■ 73.

[S-MXSP] maxE
xeX

^H(ck+xkskdk)yk
yeYkeA

where:

(a) s e{0,lr is a random vector: The outcome of the random variable sk is

denoted by sk. s^=l with probability pk, and sk=0 with probability l-pk. Thus,

0 < pk < 1 is the probability an interdiction attempt on arc k is successful. We

assume that the successes of separate interdiction attempts are independent

events.

(b) The rest of the formulation is the same as in MXSP. Thus,

X = {xe {0,1} ^' \Rx < r} represents the set of feasible interdiction plans and Y is

the set of all s-t paths, represented in MXSP through flow balance constraints.

For simplicity and without lost of generality we assume that for every k, dk < 00

(an infinite delay can be replaced by a very large, but finite, delay, which would

ensure that no shortest path would use arc k when it is interdicted), and we assume

that all arcs are interdictable (a non-interdictable arc k can be modeled by setting

4=0).

In S-MXSP, the inner minimization problem is a standard shortest-path problem

with arc lengths Ck + Xk sk dk. That is, the network user finds a shortest s-t path given the

interdiction plan x and its random outcome xksk for every k. We denote this shortest

path by y(x,s) where yk(x,s) = l if the path y(x,s) uses arc AT, else yk(x,s) = 0. For

-74.

simplicity, we assume y(x,s) is unique, but all results in this chapter can easily be

generalized to allow multiple shortest paths.

Let E ™inH(.ck+xkskdk)yk

.ye7JkeA
= E Y,(ck+xkskdk)yk(x,s)

./teA

z(x) be the

expected length of the shortest s-t path given interdiction plan x, so that S-MXSP is

equivalent to maxz(x). z(x) can be calculated exactly by solving the shortest-path
xeX

problem associated with each outcome of the random vector s. The literature also offers

several algorithms for estimating z(x) (e.g., Alexopoulos 1997, Fishman 1985).

The basic model assumes that only a single interdiction may be attempted on any

arc. The following discussion shows that this is not actually a restriction. Assume that

we have an arc k, which can be attacked by n different methods. Each method includes

one or more independent and/or dependent interdiction attempts. For instance, arc k can

be attacked by an airplane formation, 2 cruise missiles, or both, so we have three possible

methods. Denote by pJ
k the probability of successful interdiction when method of attack

j is chosen, and by dJ
k the delay expected on arc k when attack by method y is successful.

To handle this situation we introduce the following construction:

(a) We "break" the arc k into n serial arcs, kl,..., kn, each with length ck /n.

(b) We set the probability of successful interdiction on arc kJ to be p]
k and the delay

when the arc is interdicted successfully to d]
k.

(c) Last, we add the constraint x,x + x, 2 +.. .+x, „ <1 to make sure that only one

method of attack is chosen (recall that a method of attack may include several

interdiction attempts).

-75-

The construction ensures that if none of the arcs k ,... ,kn is interdicted, or one of

the arcs is interdicted but not successfully, the effective length of the composite arc k\ is

nx(ck/ri) = ck. But if method of attack j is chosen, and arc k* is interdicted

successfully, the effective length of the composite arc k\ is n x (ck/n) + dk, as required

B. DECOMPOSITION APPROACH

By Corollary 3.2, we can construct Algorithm 1 for solving S-MXSP if we have

constants c(x) and penalty multipliers vk(x) such that:

[5.1] z(x) = c(x)+^vk(x)xk VxeX, and
keA

[5.2] z(x) < c(x) + £ vk(x)xk V x, x eX
keA

Given the coefficients c(x) and v(x), the master problem of Algorithm 1 is

|Master(Z)| max z
1 J z,x

s. t. z < c(x) + ^ vk (x)xk for every x e X

where X is a subset of the set of feasible interdiction plans, and the subproblem, Sub (x),

provides c(x)and v(x)such that [5.1] and [5.2] hold. The following proposition shows

how valid c(x) and v(x) can be calculated.

Proposition 5.1: For every x GX, define:

[5.3] c(x) = ^ckE[Sk(x,~s)], and
keA

[5.4] vk(it) = dkE{skyk(x,~s)] We A

Then, conditions [5-1] and [5-2] hold.

■ 76-

Proof:

z(x) =E

<E

min Yj(ck +xkskdk)yk
*eYkeA

MA

Z(c* +xkskdk)yk(x,s)
keA

for all x e X

and equality must hold when x = x, because given x and s, %(x,s) is, by definition,

the shortest path. Now,

^Z(ck+xkSkdk)%(*>s)
ksA

= Z E \ck% & s)] + Z *k4ifi WSk (x, s)]
keA keA

= c(x) + %vk(x)xk, m
keA

Remarks:

(a) c(x) is the average length of the shortest path that the network user traverses,

excluding delays, given interdiction plan x. E[yk(x, s)] is the probability that the

network user traverses arc k, given interdiction plan x.

(b) If xk = 1, Vfc(x) is the average delay the network user experiences on arc k, given

interdiction plan x. jE^y^XjS)] is the probability that the network user

traverses arc k given that the arc is successfully interdicted.

(c) The proposition actually establishes that if x does not interdict arc k, Vjt(x)

bounds the (average) gain the interdictor can achieve over z(x) by interdicting

this arc. Notice that when xk=0, £[sjtyfc(x,s)] = £[j;J.E[;yjfc(x,s)]

-77-

= pkE[yk(x, s)] where E[yk(x, s)] is the probability that the network user

traverses arc k given interdiction plan x.

Proposition 5.1 enables solution of S-MXSP through Benders decomposition,

i.e., through Algorithm 1, at least in theory. The master problem suggests an interdiction

plan x, and the subproblem (/) evaluates z(x), which may update the lower bound, and

(//') generates a new cut for the master problem through calculation of JE[J>£(X,S)] and

E[skyk(x,s)]. To compute these expected values, the subproblem solves 2^Xk shortest

path problems, one for each possible outcome of the interdiction plan x.

In addition, we can use the Benders cut for building the integrality and covering

cuts in the usual way (see Chapter EOT), establishing versions of Algorithm 2E, the

covering decomposition, and Algorithm 3, the hybrid algorithm, for solving S-MXSP.

An important part of those two algorithms is a local-search procedure that can find more

than one covering cut per iteration. We will discuss this in more detail later.

A major difficulty of all three decomposition algorithms is the exponential

complexity of the subproblem. For instance, if an interdiction plan interdicts 10 arcs, the

subproblem requires solution of 1024 shortest-path problems, which our code does in less

than 2 CPU seconds (for a 10 x 10 network). An average of 2 seconds CPU time for the

subproblem is not a major concern. But, if the interdiction plan interdicts 20 arcs, the

running time of the subproblem increases to over 2000 CPU seconds per iteration! Thus,

the subproblem quickly becomes intractable.

-78-

C. APPROXIMATION THROUGH DECOMPOSITION

In trying to cope with the complexity of the subproblem, we suggest a series of

approximation algorithms which share the following principles:

(a) There is no change in the master problem; either one of the three decomposition

master problems may be used. But, to keep the discussion simple, we assume that

the master problem of Algorithm 1 is used.

(b) The subproblem solves a "reasonable number" of shortest-path problems.

(c) Given an interdiction plan x, the subproblem for approximation h, sets values for

c(x) = ch(x) and vfc(x) = vj(x) such that [5-2] holds, i.e.,

z(x)<cA(x)+^vjt(x)^ Vx,xel As a direct result,
/fceA

zh(x) = ch(x) + ^ v%(x)xk is an upper bound for z(x).
keA

(d) We add to the master problem for approximation h the valid inequality, or "slack

cut," z< ch(x)+]T vjt (x)xk. We call that a "slack cut" because [5-1] may
keA

not hold. However, since [5-2] holds, the value of the objective function of the

master problem, denoted by zh for approximation h, is a valid upper bound for

the solution of S-MXSP. We may also add to the master problem the integrality

cut associated with this slack cut.

(e) For a given master problem, we define zh =maxz (x). We use zh as an

artificial, possibly invalid, lower bound on z(x*).

(f) When the difference between zh and zh drops below a designated approximation

gap, we say that "the approximation algorithm has converged."

-79-

(g) The algorithm must converge because the number of feasible interdiction plans is

finite, and in every iteration the master problem either suggests a new interdiction

plan that is not yet in X, or zh = zh.

(h) The procedure actually solves a problem with a modified objective zh(x).

Denote by xh the optimal (or nearly so) solution that approximation algorithm h

achieves using the modified objective,

(i) When practical, the algorithms establish a lower bound on the solution of S-

MXSP and a true optimality gap, zh -z(xh), by calculating z(xh) using full

enumeration. When this is impractical, the algorithms estimate z(xh) through

sampling. (Any other algorithm that gives a lower bound on z(x) could be used

here, too.)

(j) Last, as an optional step, full enumeration of z(xh) can be used to tighten the cut

in the master problem associated with x , and the master problem can be re-

solved. This may improve the upper bound.

To establish an approximation algorithm as described above, we only require a

subproblem that sets values for ch(x) and v|(x) such that [5-2] holds. Next, we

introduce a proposition that helps us to derive such subproblems, but first we need some

definitions.

-80-

Definition 5.1: A deterministic reply strategy yA(s) for the network user, is a function

that assigns an s-t path yÄ(s), for all possible outcomes seS.

The deterministic reply strategy represents a possible way of action for the

network user. Given outcome s, the reply strategy assumes that the network user

traverses path yA(s), independently of the current interdiction plan. This is a feasible

reply but the network user may have better choices. Therefore, for every interdiction plan

x, the average shortest-path length achieved by yA(s) given x, is an upper bound on

z(x). We now define a more general set of feasible reply strategies.

Definition 5.2: A randomized reply strategy yA(s) for the network user is a function that

assigns a probability distribution ^(y | s), over the set of all s-t paths (denoted by y e Y),

for all possible outcomes s e S. (Thus,]>] ^(y |s) =1 for all s e S.)
yeY

yA(s) also represents a possible way of action for the network user. Given

outcome s, the randomized reply strategy assumes that the network user traverses path y

with probability ^(y|s), independently of the current interdiction plan. Note that any

deterministic reply strategy can be defined as a randomized reply strategy, too. We now

show formally how to devise a slack cut, and thus an approximation algorithm, from any

reply strategy.

81

Proposition 5.2: Let y^(s) be a randomized reply strategy associated with

approximation h. Define:

[5.5]

[5.6]

c\x) =^ckE
keA yeY

v*(x) =dkn\SkZh<y\s)yk

and

VkeA

Then, [5-2] holds, i. e., z(x) < ch (x) + £ v£ (£)** V x, x e X.

Proof: For all x eX,

z(x) =E

= E

min J^(ck+xkskdk)yk
yeY keA

f ^
min 2 (ck+ xkskdk) £ ^s (y | s ^
yeF £e.4\ yer

<E 2 (cfc + *^*4) E ^x(y I s)&

keA
*Eh(y\s)yk
yeY

+ xkdkE hUfaiyl^Sk
yeY

ch(x) + Zvh
k(x)xk

keA

Corollary 5.1: We can establish an approximation algorithm by defining how a

subproblem sets a reply strategy, deterministic or randomized, for any given interdiction

plan x. ■

• 82-

Thus, in the approximation algorithms the subproblem takes in an interdiction

plan x and returns a randomized reply strategy y|(s) or a deterministic reply strategy

y\ (s). In the exact decomposition algorithm the subproblem does the same, but there it

finds the best reply strategy (which is always deterministic), while in the approximation

algorithm the subproblem finds a sub-optimal strategy. However, in order for the

approximation algorithm to work effectively, it should find a relatively good reply

strategy without too much computational effort. We next describe several approximation

algorithms, each one characterized by its reply strategy.

Algorithm HI

The first approximation through decomposition uses a simple expected-value

approach. Given interdiction plan x, let y1(x)be the shortest s-t path in the network

using expected arc lengths, i.e., using arc lengths ck +xkpkdk. Now, for all interdiction

plans x, define the deterministic reply strategy by ys(s) = y1(x) for all seS. By

Corollary 5.1 we have established an approximation algorithm, Algorithm HI.

The modified objective in HI (see principle (h)) assumes that the follower knows

the chosen interdiction plan and all success probabilities, but not the actual outcome of

the executed interdiction plan. This "restricts the recourse" of the follower (see Morton

and Wood 1999) so we obtain an upper bound on the solution for S-MXSP, as we already

know, from Proposition 5.2.

-83-

In this approximation, every subproblem solves just one shortest-path problem.

Actually, approximation algorithm HI is a decomposition for the deterministic

interdiction problem with <4 replaced by dkpk = dkEsk. Therefore, we can apply the

Algorithm 2E or Algorithm 3 with the Local_Search procedure established for the

deterministic case. The running time of the approximation HI (without the evaluation of

the exact objective function of the candidate solution; see principle (i) above) should be

roughly the same as the running time for the deterministic interdiction algorithms.

Algorithm H2

As a refinement to HI, the modified objective of approximation H2 assumes that

the follower knows the original interdiction plan, all success probabilities and also (and

this is the difference between HI and H2) the number of successful interdictions.

However, the follower does not know which specific arcs were interdicted successfully.

Given an interdiction plan x, let n be the number of interdiction attempts. For m

= 0,...,w, p(wi)(x) is the probability that x results in m successful interdictions. Let

d™ = E[skdk |m,x]. Hence, ck +xkd™ is the expected length of arc k given x and m.

Let y2'm(x)be the shortest s-t path in the network with these arc lengths. Now, for all

interdiction plans x, define the deterministic reply strategy by y|(s) = y2'OT^s'x^(x) for

all s eS where m(s,x) if the number of successful interdictions x causes given outcome

s. By Corollary 5.1 we have established an approximation algorithm H2.

84.

In this approximation, every subproblem solves just n shortest-path problems.

(Notice that y2'°(x) is the shortest s-t path with no interdiction, which is independent of

x.) However, we need to calculate /?(m)(x) and d™. When pk =p for every k&A,

p(m)(x) can be calculated directly from the binomial distribution, and the fact that

df =—dt. When different arcs may have different probabilities^, these parameters
K n

can be calculated in 0(|A|2) time using the generating function

keA

Approximation H2 partitions the probability space according to the total number

of successful interdiction attempts. Other partitioning schemes may be used too. For

instance, a partition can be based on the success of a single interdiction, or on the number

of successes in a group of arcs, etc. Furthermore, an algorithm can start with a crude

partition and refine it later, until it reaches a desired optimality gap. This procedure is

called "sequential approximation" in the stochastic programming literature (e.g. Kail et al

1988) and it was used by Cormican et al. (1998) for solving a stochastic max-flow

network-interdiction problem. Algorithm H3 uses yet another partitioning scheme.

Algorithm H3

In this algorithm, the subproblem solves the shortest-path problem for a relatively

few, "most likely" outcomes, and bounds the shortest-path length at all other possible

outcomes, using the simple expected-value approach. Assume for instance that x

interdicts 10 arcs and the probability of success is 0.8 for every arc. Instead of solving

1024 shortest-path problems (as the exact decomposition algorithm would do), an

-85-

approximation algorithm H3 of "enumeration depth" 2 solves only the cases where 8

(8 = 10 - 2) or more of the arcs are successfully interdicted. There are only 56 such

outcomes but they cover about 68% of the probability space. Then, the approximation

bounds the shortest-path length in the remaining 968 outcomes by finding one shortest-

path which is optimal with respect to the average delays across those outcomes.

To establish approximation H3 of enumeration depth 2 formally, define the

following sets:

(a) S' is the set of all outcomes s with 2 or fewer failures in x, and

(b) S" is the set of all outcomes s with more than 2 failures in x.

Now, for all interdiction plans x, define the deterministic reply strategy by

yA(s) = y(x,s) for all seS',and by y^s) = y3(x) for all s<=S", where y3(x) is the

shortest path with arcs lengths defined as E[ck + xkskdk\ s e S"] for all A e A.

Example 5.1

This example demonstrates the way subproblems work in the exact decomposition

algorithm and in the three approximations suggested so far. Moreover, we later use this

example to motivate a possible improvement to approximation H3.

Assume that the interdictor interdicts 4 arcs, denoted by Al, kl, A3, and A4. There

are 24 = 16 possible outcomes and each is denoted by a four-digit binary number. For

instance, 1010 represents an outcome in which the interdiction of k\ and A3 are

successful and the interdiction of kl and A4 are not.

All the algorithms solve several shortest-path problems, each associated with a

specific possible outcomes, or an average of several outcomes (combined by an

-86-

approximation algorithm). Figure 5.1 shows how the different algorithms partition these

16 possibilities. In the figure, every cell represents group of outcomes that the algorithm

links, and so every cell represents one shortest-path problem that the subproblem solves.

Exact Alg. Approx.
Alg.Hl

Approx.
Alg.H2

Approx.
Alg.H3

(depth 2)

1111 1111

1110

1101

1011

0111

1100

1010

1001

0110

0101

0011

1000

0100

0010

0001

0000

1111 1111

1110 1110

1101

1011

0111

1110

1101 1101

1011 1011

0111 0111

1100 1100

1010

1001

0110

0101

0011

1100

1010 1010

1001 1001

0110 0110

0101 0101

0011 0011

1000 1000

0100

0010

0001

1000

0100

0010

0001

0000

0100

0010

0001

0000 0000

Figure 5.1: Given an interdiction plan with 4 attempts, every algorithm
for S-MXSP partitions the 16 possible outcomes into a different set of
"cells" (divided by horizontal lines), and solves one shortest-path
problem for each cell.

-87-

Algorithm H4

In approximation H3, the reply strategy for each one of the outcomes in S" is the

same path, in particular, the path that is shortest on average over all outcomes in S". (In

the example of Figure 5.1, S" is the large cell in the bottom of the list associated with

H3.) The main idea of approximation H4 is to use information about shortest-path

problems associated with outcomes in S' (in the example of Figure 5.1, those outcomes

that are in separate cells in the top part of the list associated with H3) to define a possibly

better reply strategy for outcomes in S".

For instance, consider outcome 0100 in Example 5.1. Intuitively, it seems likely

that shortest paths that are associated with outcomes 1100, 0110 and 0101 are relatively

short paths with respect to outcome 0100. Given outcome 0100, none of these 3 paths is

necessarily the shortest path, but they may be better, i.e., shorter on average, than the

single path that is good on average with respect to all the outcomes in 5"'. In

approximation H4, the reply strategy for each of the outcomes in S" (the same set as in

H3) is a randomized combination of optimal replies to related outcomes in S'.

To define precisely approximation H4 of enumeration depth 2, we first assume

that pk= p for all arcs k. Let n be the number of interdiction attempts for a given

interdiction plan x. For m = 0,...,n, p^m\x) is the probability that x results in m

successful interdictions (given by the binomial distribution), and Sm (x) is the set of all

outcomes with exactly m successful attempts in x. Now, given an interdiction plan x,

we define the randomized reply strategy by defining <f>^(y | s) for all s e S:

-88-

(a) For all s e5n(x)u5w_1(x)u5n-2(x), let ^(y|s) be 1 for y(x,s) and 0

otherwise.

(b) For m = 0,...,n-3 and all s e5w(x) we first identify the f"^") elements of

5n_2(x) where the same m attempts are successful too, denoted by

4 „2 t") s ,s ,...,sv . (Out of the n-m interdiction failures in x corresponding to

s e5m(x), we need all combinations of two failures, each one corresponding to a

m-2/£s different se5M_z(x).) Let

^(y|s) = <
i/CT) yey

/n-m\

x,s1),y(x,s2),...,y(i,sv 2 ;)

0 otherwise

By Proposition 5.2 and Corollary 5.1, to establish an approximation algorithm

the subproblem must calculate E[yk(x,s)] and E[skyk(x,s)] for all k<=A. The

following proposition shows how that can be done with respect to our definitions of

approximation H4.

Proposition 5.3: In approximation algorithm H4 of depth 2, for all k&A,

[5.7] E[yk(x,s)] = ^^(^[ÄÄ^Iser^+S^C^^^J)
m=n-2

seSn~2(x)
m=0

[5.8] E[skyk(x,s)] = £p(m\x)E[skyk(x,s)\s zSm(x)]
m=n-2

+ Zp™(x)E[sk | s <=Sm(x)] E[yk(x,s) seSn-2(x),sk=l

-89

Proof: By definition, for all k &A

E[yk(x,~s)] = J/»)(i)£[yt(i,;)

E[skyk(x,s)] =XpW(x)E[skyk(x~s)

seSm(x)] and

SGSm(x)],
m=0

and so it is enough to show that for all m<n-3 and for all k e A

E[yk(x,~s)\seSm] = E[yk(x~s)\s eSn~2] and

E[skyk(x,s)\s eSm] =E[sk\s eSm(x)}E[yk(x,s)\S GSn~2(x),sk =l].

But, these are straightforward results of our definition of the reply strategy in

approximation algorithm H4 of depth 2 and the assumption that pk = p for all k ■

Remark: We conjecture that a modified reply strategy can be defined such that

Proposition 5.3 holds even if the probability that an interdiction attempt is successful is

not the same for all interdictable arcs. That modified strategy needs to assign different

weight to different paths in the definition of the reply strategy for se5m, m<n-3, in

order to keep [5.7] and [5.8] valid.

In order to calculate £[y^.(x,j)] and E[skyk(x,s)] for all k e A it is enough to

calculate the probability of each outcome s e Sn(x) u Sn (x) u Sn (x), and to find the

shortest-path given this s, since for all k e A:

(a) nfVm)(x) = l- fy»>(i),and
m=0 m=n-2

(b) X^Cx^p^se^Cx^^- X^CX^ISES"^].
m=0 m=m-2

-90.

D. A LOCAL-SEARCH PROCEDURE

Our experience with the different decomposition algorithms for solving the

deterministic MXSP, as well as preliminary computational results for S-MXSP (reported

later), indicate that the running time of the master problem is very sensitive to the number

of Benders cuts. In fact, even though the subproblem of S-MXSP requires more work

compared to the subproblem in MXSP, in both cases the limits of the decomposition

algorithms are determined by the difficulty in solving the master problems, at least with

our current technology.

In order to solve the problem with fewer master iterations (every iteration adds

one more Benders cut), the hybrid algorithm can use a local-search procedure to generate

more than one covering cut per iteration. Those cuts are added to the master problem,

and tighten it. This discussion suggests that a local-search procedure may also be helpful

for the different decomposition algorithms (exact or approximate) for S-MXSP. We

describe a possible local-search procedure for the exact decomposition algorithm.

However, the same approach may be use to develop a local-search procedure for all the

approximation algorithms, too.

Let y$(s) be any reply strategy, deterministic or randomized, that the subproblem

can define given interdiction plan x. It may be, for instance, that y% (s) is the second

shortest path given x and s, or the second shortest path in the list of paths generated by

our Local_Search procedure we described for MXSP. Then, by Proposition 5.2 we can

define c(x) = ^E{cky(x,sk)] and Vk(x) = dkE[skyk(x,s)], to obtain the valid
keA

Benders cut z < c(x) + ^ vk(x)xk But, as we discussed earlier, too many Benders cut is
keA

91

not a good idea. Therefore, the local-search procedure might only generate a covering

cut based on this (slack) Benders cut, and add it to the master problem. (If c(x) exceeds

the current value of z, we will not include this cut in the master problem, but rather, as in

Algorithm 2E for MXSP, put it aside for possible later use.)

For instance, suppose we choose yk(x,s) as the second shortest path given x and

s. Then, when we compute the exact Benders cut we also find the second shortest path

in each of the subproblems. Those second shortest paths are used to compute a slack cut,

and the covering cut associated with this slack cut is added to the master problem. Note

that we can generate more than one slack cut per iteration by finding additional paths for

every subproblem.

E. COMPUTATIONAL EXPERIENCE

To test the different algorithms, we use the shortest-path network and

computational platform described in Chapter n. However, a new vector p is added,

where pk is the probability an interdiction attempt on arc k is successful. For the results

reported here, we use the same success probability for every arc, denoted by p.

The following tables summarize the results for several different cases. We note

that these are preliminary results and that none of the algorithms includes a local-search

procedure. Thus, the exact and approximation decompositions are accomplished with

Algorithm 1. In the case of approximation HI, we could have used the Local_Search

procedure developed for deterministic network interdiction (that might have reduced its

running time significantly, as seen in Chapter H) but we did not, in order to allow a fair

comparison between this algorithm and the others.

■ 92-

Table 5.1 compares approximation HI, approximation H2 and the exact

algorithm. In both approximations we use a 1% approximation gap, but, as the table

shows, that translates to a 12-20% true optimality gap for our test problems. (See

principles (f) and (i) in Section 5.C) for the definitions of approximation gap and

optimality gap.)

We solve the same problems with the exact algorithm up to a 12% or 15%

optimality gap. Table 5.1 shows that the exact algorithm has similar running times to the

approximations for this parameter setting. But, since computational effort in the exact

algorithm is clearly more sensitive to the total amount of interdiction resource (we do not

see this in the table because ro is relatively small), the approximation algorithm would

probably outperform the exact algorithm with larger values of ro- In any case, the

running times indicate that we cannot successfully increase ro significantly, even in the

approximations, without adding a local-search procedure or other effective enhancement.

H2 takes much more running time than HI, but yields a similar optimality gap.

The major disadvantage of H2 is in the master problem level (the extra work in the

subproblem is insignificant here.) The cuts in the master problem of H2 are less effective

(compare the number of iterations the two algorithms need for convergence, NH2 versus

NHI), probably because every cut in H2 represents a weighted combination of multiple s-t

paths, and not a single path. Thus, in the cuts of H2 the non-zero coefficients are smaller

on average, and so the cuts are "flatter," (in the geometric sense) compared to the cuts in

HI. (Notice that each cut in the exact algorithm is a weighted combination of many s-t

paths and so is even flatter. As a result, the exact algorithm requires more iterations to

• 93

achieve a 12% gap, than approximations HI and H2 need to achieve a 1% approximation

gap, which is actually 1% optimality gap with respect to the modified objective.)

Note also that:

(a) The optimality gap of both approximations HI and H2 becomes smaller, though

not small enough, when/» increases, and

(b) The optimality gap of all approximations increases when we have more

interdiction resource.

(c) For the case/? = 0.7 and r0 = 15 (problem set IS), we used the exact algorithm to

solve the same problem to a 2% optimality gap. It turns out that the optimality

gap obtained by the approximation algorithms (and the exact algorithm when used

with a 15% gap) depends primarily on poor upper bounds rather than poor

interdiction plans x. About 20% of the gap is due to the difference between the

optimal objective value and the lower bound (i.e., the objective value of the

incumbent solution), while the weak upper bound is responsible for 80% of the

gap-

-94-

Approximation Hl Approximation H2 Exact Algorithm

NE Problem P ro LBHI UBHI %gm TH. NH, LBH2 UBH2 %gH2 TH2 Nffi LBE UBE %gE TE

IS 0.7 15 17.8 21.0 18.3 15 20 17.8 20.8 16.5 38 33 18.0 20.6 15 14 22

2S 0.7 20 18.4 22.0 20.1 84 33 18.4 21.8 18.6 243 54 18.5 21.3 15 87 37

3S 0.8 15 18.8 21.2 12.6 21 24 18.8 21.1 12.3 36 21 18.9 21.0 12 39 32

4S 0.8 20 19.5 22.5 15.6 102 39 19.5 22.4 14.4 266 53 19.5 21.7 12 255 60

Table 5.1: Computational results for S-MXSP. The test network has 64=8x8 inner nodes (a=238), c=10, d=l0
and r=5. The approximation gap for HI and H2 is 1%.

Legend: LBA Lower bound achieved by Algorithm h.
UBÄ Upper bound achieved by Algorithm h.
%gk True optimality gap achieved by the Algorithm h.
Th Thinning time in CPU seconds for Algorithm h.
NA Number of iterations for Algorithm h.

Table 5.2 compares approximation H3, approximation H4 and the exact

algorithm (both approximations are of enumeration depth 2). We solve the exact

algorithm with 5% and 10% optimality gaps, and in order to obtain similar results we set

the approximation gap to 1% and 4% in H3, and to 4% and 8% in H4.

The table shows that approximation H3 cannot establish small optimality gaps. In

problems 7S we solve approximation H3 with a 1% approximation gap but obtain an 8%

true optimality gap. On the same problems, approximation H4 with a 4% approximation

gap yields a true optimality gap of 6.5%. Thus, approximation H4 estimates the reply to

outcomes with 3 or more failures better than approximation H3, and so the modified

objective of H4 is closer in its value to the optimal objective.

•95-

Table 5.2 also demonstrates, just as Table 5.1, that the approximations and exact

algorithm have similar running times, when the exact algorithm is solved with a similar

true optimality gap. But, with increased r0 the approximations would probably

outperform the exact algorithm.

Approximation H3 Approximation H4 Exact Algorithm

Prob. P r0 %g LBH3 UBH3 %gH3 TH3 NH3 %g LB« UB»4 %gm Tw N«4 LBE UBE %gE TE NE

5S 0.75 15 4.0 18.4 20.5 11.1 87 57 8.0 18.5 20.4 10.2 61 50 18.4 20.2 10 74 46

6S 0.75 20 4.0 19.2 21.9 14.5 200 73 8.0 19.1 21.3 11.8 567 97 19.1 21.0 10 550 87

7S 0.75 15 1.0 18.5 20.0 8.0 333 197 4.0 18.5 19.7 6.5 352 117 18.6 19.5 5 344 107

Table 5.2: Computational results for S-MXSP. The test network has 64=8x8 inner nodes (o=238),
c=10, öN10andr=5.

Legend: %g Approximation gap.
All other legend data as in Table 5.1

F. CONCLUSIONS

In this chapter we have shown how our approach for solving deterministic

system-interdiction problems can be extended to solve one type of stochastic system-

interdiction problem. We revisited the shortest-path network-interdiction problem to

demonstrate this, but this time assumed that interdiction success is uncertain. As

expected, the stochastic problem is much more difficult to solve than the deterministic

one, mainly because the subproblems in our decomposition algorithm generate "flat"

cuts, and so the master problem requires more iterations to converge. Surprisingly, this is

even true for an exact algorithm with exponential complexity in the subproblems. From

• 96-

our experience with the deterministic interdiction problem (and the shortest-path

network-defense problem) we know that a local-search procedure will likely accelerate

the decomposition algorithms for the stochastic problems, but we have not yet

implemented such a procedure.

We compared the exact decomposition algorithm to several approximation

(decomposition) algorithms. On our test problems, the exact and approximation

algorithms require similar running times (when the problem is solved to the same

optimality gap) but in larger problems the approximations are likely to be better, because

they don't require an exponential amount of work in the subproblem phase.

Among the approximations, algorithm H4 gives the best results. For a given

optimality gap, running times for approximation H4 are similar to those of the other

approximations, and of all the approximations tested, approximation H4 establishes the

smallest optimality gaps. Approximation H4 finds the optimal reply of the network user

for the most likely outcomes out of the interdiction attempts, and use that to approximate

(and bound) the optimal network user replies for all other outcomes.

Last, we note that our approach for solving S-MXSP can be easily applied to

other interdiction problems, where the success of each interdiction attempt is uncertain.

•97-

98-

VI. CONCLUSIONS

This chapter reviews the accomplishments of this dissertation and suggests

opportunities for further research.

In this dissertation we have discussed several problems concerning system

interdiction and defense, using a shortest-path network-interdiction scenario to

demonstrate our approach. We have addressed the following questions:

(a) What is the best interdiction plan?

(b) What is the best defense plan against a prospective set of interdictions?

(c) What is the best interdiction plan when interdiction attempts might fail?

The deterministic shortest-path network-interdiction problem (MXSP) is

discussed in Chapter EL MXSP assumes that a network user traverses a shortest path

given the results of a prior interdiction, and the question is "What interdiction plan will

maximize the length of that shortest path?" When interdiction of an arc increases its

effective length by a finite amount (called "delay"), and the network user traverses the

shortest path given the interdiction, we have shown how to formulate the problem as a

mixed-integer program (MIP), and how to solve the problem with Benders

decomposition. However, when interdiction of an arc makes the arc impassable, those

solution techniques can be ineffective, and we therefore devised a second decomposition

algorithm, in which the Benders master problem is replaced by a set-covering problem.

Last, we combined the first two decomposition algorithms into a hybrid decomposition

algorithm which gives the best computational results. All tests were performed on

randomly generated networks, it would be interesting to repeat those tests on more

realistic problems.

-99-

The hybrid algorithm includes several special enhancements, derived through the

first two decomposition algorithms, especially (/') integrality cuts for the Benders master

problem along with a method to tighten those cuts, and, (if) covering constraints—which

are best viewed as integrality cuts in this context—and a method to generate and lift

them. Those enhancements were shown to be effective for solving MXSP. It would be

interesting, when delays are finite, to see if the integrality cuts and/or covering

constraints derived from the decompositions would be useful as (integrality) cuts for

reducing solution times for MXSP solved as a MEP. It might also be possible to add

some constraints, possibly aggregated, from the MIP to the decomposition master

problems to tighten their relaxations and thereby improve solution times.

In Chapter HI we showed how the techniques used to solve the shortest-path

network-interdiction problem can be used for solving other interdiction problems where

an interdictor tries to reduce the effectiveness of an adversary's system through

interdiction. Thus, our methods can be used to interdict a shortest-path system with side

constraints, disrupt activities in a PERT network in order to maximize project completion

time, reduce the effectiveness of an economic system modeled as an optimization

problem, etc.

In a wider perspective, the special enhancements we suggest for the basic master

problem in Benders decomposition, i.e., the integrality and covering cuts, may be helpful

while applying Benders decomposition to other problems with binary "complicating"

variables. Consider, for example, a problem of the design and operation of a production

and distribution system. These problems often involve (i) "strategic variables," which

constitute binary decisions over facility locations and other issues of infrastructure, and,

-100-

(»') "operational variables," usually assumed continuous. A common way of solving

those problems is through Benders decomposition (e.g., Brown et al. 1987), where the

subproblem is a (relatively simple) operational problem and the master problem deals

with the binary strategic variables. It might be possible to improve running times of such

decompositions by adding the integrality cuts and/or covering constraints to the Benders

master problem, as was done with MXSP.

In Chapter IV we discussed a system-defense problem in which the system user

can defend some of his activities, resources, etc., against prospective interdiction. The

system-defense problem turns out to be a system-interdiction problem in itself, where the

defender interdicts the interdictor's system. This view leads us to solve the problem of

defending the shortest path (in this problem the network user defends some of the arcs in

a shortest-path network and afterward the interdictor finds the best interdiction plan on

the undefended arcs of the network) with nested decomposition algorithms. The

algorithms we use include the enhancements developed for MXSP (and adapted for more

general system-interdiction problems) and special procedures that take advantage of the

structure of the nested decomposition. It would be interesting and challenging to apply

the nested decomposition algorithm to other system-defense problems, too.

In Chapter V we showed how our approach for solving deterministic system-

interdiction problems can be extended to solve a shortest-path network-interdiction

problem where interdiction success is uncertain, and the interdictor wishes to maximizes

the average length of the post-interdiction shortest path. Even this "simple" stochastic

scenario is much more difficult to solve exactly compared to the deterministic analog

because evaluating the expected shortest-path length, given an interdiction plan, requires

101

exponential work.

To deal with the complexity of the stochastic problem we devised several

decomposition algorithms that approximate the expected length of the shortest path after

interdiction. In these algorithms, the subproblems involve only at a subset of the possible

outcomes, or aggregate several outcomes together, so that the number of scenarios

considered by the subproblem is manageable. Those approximations yield upper bounds

on the optimal objective value. A lower bound can be found, when computationally

feasible, by calculating the exact objective value (i.e., by considering all possible

scenarios) for one feasible interdiction plan. A good feasible interdiction plan (one that is

likely to give a good lower bound) is often suggested by the near-exact solution of the

approximation.

Our limited computational experience includes only the basic Benders

decomposition for the exact and approximating algorithms. Unfortunately, the

subproblems for any of these algorithms generate "flat" cuts, and such cuts cause the

master problem to require more iterations to converge compared to analogous

deterministic problems. Our computational tests show that all algorithms can have similar

running times for the same optimality gap. However, with increased interdiction

resources, the approximations are likely to outperform the exact algorithm. Further

programming work is needed to check the effectiveness of the integrality cuts and the

other basic decomposition algorithms in this stochastic scenario; these techniques might

help compensate for the problematic flat cuts.

102-

Our model assumes uncertainty only with respect to the success of each

interdiction attempt, but other types of uncertainty might be important as well. For

instance, in a shortest-path interdiction problem, the interdictor might not know the exact

length of certain arcs, the exact location of the source and target nodes, etc. More work is

needed to accommodate these variations of the model.

Among the approximation algorithms, of special interest is an algorithm that finds

the shortest paths with respect to the most likely scenarios and uses those to approximate

(and bound) the shortest path with respect to all other outcomes. This algorithm seems to

give the best results but correctness is only proven for the case in which all arc

interdiction-success probabilities are equal.

The approximation algorithms take advantage of the special structure of the

stochastic network-interdiction problem, in particular, the fact that first-level variables

(interdiction decisions) affect only the cost of the second-level activities. (In a shortest

path problem the cost of traversing an arc is the arc's length). However, the same

structure can be found in other stochastic programming problems. Consider a stochastic

programming problem of the form

max £[/(x)]

where /(x) = max c y
yeY

s.t. ATy<d+Bx

where B - diag(b). For instance, this might be a production problem where:

-103

(a) The variables x are binary decisions regarding which markets to expand.

(b) The demand at facility j is the original demand dj plus the stochastic result of the

market expansion bjXj. (Xj = 0 implies no change in market j.)

(c) All other parameters (production capabilities and costs, shipping costs, etc.) are

deterministic.

If we take the dual of the inner maximization, we obtain a max-min problem with the

same structure as the stochastic system-interdiction problems we have solved. Thus, this

problem can be solved with the approximation algorithms we have devised.

This thesis contributes mostly to the areas of system interdiction and defense, but

our techniques may be helpful in other applications solved by Benders decomposition

including certain stochastic-programming problems. Our results should provide ample

opportunities for further research in all of these areas.

104.

LIST OF REFERENCES

R. K. Ahuja, T. L. Magnanti and J. B. Orlin, 1993. Network Flows, Prentice Hall,

Englewood Cliffs, New Jersey.

C. Alexopoulos, 1997. "State space partitioning methods for stochastic shortest path

network," Networks 30, 9-21.

G. Anandalingam and V. Apprey, 1991. "Multi-level programming and conflict

resolution," European Journal of Operations Research 51, 233-247.

G. Anandalingam and D. White, 1990. "A solution method for the linear static

Stackelberg problem using penalty functions," IEEE Transactions on Automatic Control

35, 1170-1173.

M. O. Ball, B. L. Golden and R. V. Vohra, 1989. "Finding the most vital arcs in a

network," Operations Research Letters 8, 73-76.

J. Bard, 1984. "Optimality conditions for the bi-level programming problem," Naval

Research Logistics Quarterly 31, 13-26.

J. Bard, 1991. "Some properties of the bi-level programming problem," Journal of

Optimization Theory and Applications 68, 371-378.

J. Bard and J. Falk, 1982. "An explicit solution to the multi-level programming problem,"

Computers and Operations Research 9, 77-100.

J. Bard and J. Moore, 1990. "A branch and bound algorithm for the bi-level programming

problem," SIAM Journal on Scientific and Statistical Computing 11, 281-292.

J. Bard and J. Moore, 1992. "An algorithm for the discrete bi-level programming

problem," Naval Research Logistics 39, 419-435.

105-

E. M. L. Beale, 1959. "On quadratic programming," Naval Research Logistic Quartely 6,

227-243.

J. E. Beasley, 1990. "A lagrangian heuristic for set-covering problems," Naval Research

Logistics37', 151-164.

O. Ben-Ayed, 1993. "Bi-level linear programming," Computers and Operations

Research 20, 485-501.

O. Ben-Ayed, D. Boyce and C. Blair, 1988. "A general bi-level linear programming

formulation of the network design problem," Transportation Research 22 B, 311-318.

O. Ben-Ayed and C. Blair, 1990. "Computational difficulties of bi-level linear

programming," Operations Research 38, 556-560.

J. F. Benders, 1962. "Partioning procedures for solving mixed integer variables

programming problems," Numerische Mathematik 4, 238-252.

W. Bialas and M. Karwan, 1984. "Two-level linear programming," Management Science

30, 1004-1020.

J. Bracken and J. McGill, 1973. "Defense applications of mathematical programs with

optimization problems in the constraints," Operations Research 22, 1086-1096.

G. G. Brown, G. W. Graves and M. D. Honczarenko, 1987. "Design and operation of a

multicommodity production/distribution system using primal goal decomposition,"

Management Science 33, 1469-1480.

W. Candler and R. Townsley, 1993. "A linear two-level programming problem,"

Computers and Operations Research 9, 59-76.

A. Caprara, M. Fischetti and P. Toth, 1996. "A heuristic algorithm for the set covering

problem," in Lecture Notes on Computer Science, Vol. 1084, Integer Programming and

Combinatorial Optimization, W. H. Cunningham, S. T. McCormick and M. Queyranne,

editors, Springer-Verlag, Berlin, 72-81.

-106-

M. S. Chern and K. C. Lin, 1995. "Interdicting the activities of a linear program - A

parametric analysis," European Journal of Operational Research 86, 580-591.

H. W. Corely and D. Y. Sha, 1982. "Most vital links and nodes in weighted networks,"

Operation Research Letters 1, 157-160.

K. J. Cormican, 1995. "Computational methods for deterministic and stochastic network

interdiction problems," Masters Thesis, Naval Postgraduate School, Monterey,

California.

K. J. Cormican, D. P. Morton and R. K. Wood, 1998. "Stochastic network interdiction,"

Operations Research 46,184-197.

J. Falk, 1973. "A linear max-min problem," Mathematical Programming 5, 169-188.

J. Falk and J. Liu, 1995. "On bi-level programming, Part I: General nonlinear case,"

Mathematical Programming 70, 47-72.

G. S. Fishman, 1985. "Estimating network characteristics in stochastic activity network,"

Management Science 31, 579-593.

J. Fortuny-Amat and B. McCarl, 1981. "A representation and economic interpretation of

a two-level programming problem," Journal of Operational Research Society 32, 783-

792.

D. R. Fulkerson and G. C. Harding, 1977. "Maximizing the minimum source-sink path

subject to a budget constraint," Mathematical Programming 13, 116-118.

R. S. Garfinkel and G. L. Nemhauser, 1972, Integer Programming, John Wiley & Sons,

New York.

M. Gendreau, P. Marcotte and G. Savard, 1996. "A hybrid tabu-ascent algorithm for the

linear bi-level programming problem," Journal of Global Optimization 8,217-233.

107-

A.M. Geoffrion and G. W. Graves, 1974. "Multicommodity distribution system design by

Benders decomposition," Management Science 20, 822-844.

P. M. Ghare, D. C. Montgomery and T. M. Turner, 1971. "Optimal interdiction policy for

a flow network," Naval Research Logistics Quarterly 18, 37-45.

B. Golden, 1978. "A problem in network interdiction," Naval Research Logistics

Quarterly 25, 711-713.

M. Grötschel, C. Monma and M. Stoer, 1992. "Computational results with a cutting plane

algorithm for designing communication networks with low-connectivity constraints,"

Operation Research 40, 309-330.

P. Hansen, B. Jaumard and G. Savard, 1992. "New branch-and-bound rules for linear bi-

level programming," SLAM Journal on Scientific and Statistical Computing 13, 1194-

1217.

ILOG 1997. Using the CPLEX callable library version 5.0. ILOG Inc. CPLEX Division,

Incline Village, Nevada.

J. J. Judice and A. M. Faustino, 1992. "A sequential LCP method for bilevel linear

programming," Annals of Operation Research 34, 89-106.

P. Kail, A. Ruszczyhski and K. Frauendorfer, 1988. "Approximation techniques in

stochastic programming," in Y. Ermoliev and R. J. Wets (eds.) Numerical Tecniquesfor

Stochastic Programming, Springer-Verlag, Berlin, 33-64.

N. Katoh, T. Ibaraki and H. Mine, 1982. "An efficient algorithm for the k shortest simple

paths," Networks 12, 411-427.

L. LeBlanc and D. Boyce, 1986. "A bilevel programming algorithm for exact solution of

the network design problem with user-optimal flows," Transportation Research 20B,

259-265.

108-

Y. Liu and T. Spencer, 1995. "Solving a bi-level linear program when the inner decision

maker controls few variables," European Journal of Operational Research 81, 644-651.

Z.-Q. Luo and J.-S. Pang and D. Ralph, 1996. Mathematical Programs with Equilibrium

Constraints, Cambridge University Press, Cambridge, U.K.

A. W. McMasters and T. M. Mustin, 1970. "Optimal interdiction of a supply network,"

Naval Research Logistic Quarterly 17, 261-268.

K. Malik, A. K. Mittal and S. K. Gupta, 1989. "The Är-most vital arcs in the shortest path

problem," Operation Research Letters 8, 223-227.

D. Medhi, 1994. "A unified approach to network survivability for teletraffic networks:

models, algorithms and analysis," IEEE Transactions on Communication 42, 534-548.

J. Moore and J. Bard, 1990. "The mixed integer linear bi-level programming problem,"

Operations Research 38, 911 -921.

D. P. Morton and R. K. Wood, 1999. "Restricted-recourse bounds for stochastic linear

programming," Operation Research, to appear.

G. L. Nemhauser and L. A. Wolsey, 1988. Integer and Combinatorial Optimization,

Wiley-Interscience, New York.

H. Onal, 1993. "A modified simplex approach for solving bi-level programming

problems," European Journal of Operational Research 67, 126-135.

M. Simaan and J.B. Cruz, 1973. "On the Stackelberg strategy in nonzero-sum games,"

Journal of Optimization Theory and Applications 11, 533-555.

H. A. Taha, 1975. Integer Programming, Academic Press, New York.

-109.

H. Vaish and C. M. Shetty, 1977. "A cutting plane algorithm for the bilinear

programming problem," Naval Research Logistic Quarterly 24, 83-94.

L. Vicente and P. Calamai, 1994. "Bi-level and multilevel programming: A bibliography

review," Journal of Global Optimization 5, 291-306.

L. Vicente, G. Savard and J. Judice, 1996. "Discrete linear bi-level programming

problem," Journal ojOptimization Theory and Applications 89, 597-614.

A. Washburn and K. Wood, 1994. "Two-person zero-sum games for network

interdiction," Operations Research 43, 243-251.

U. Wen and S. Hsu, 1991. "Linear bi-level programming problems - a review," Journal

of the Operational Research Society 42, 125-133.

U. Wen and Y. Yang, 1990. "Algorithms for solving the mixed integer two-level linear

programming problem," Computers and Operations Research 17, 133-142.

The White House, Executive Order 13010, July 15, 1996.

R. K. Wood, 1993. "Deterministic network interdiction," Mathematical and Computer

Modeling 17, 1-18.

-110-

APPENDIX A. BI-LEVEL LINEAR PROGRAMMING

The system interdiction problem is a min-max, mixed integer, bi-level linear

program. In this appendix we introduce the definitions of a general bi-level linear

problem and its max-min and mixed-integer variants. The focus of the discussion is on

existing algorithms for bi-level problems, and their applicability to the special structure

of the system interdiction problem.

A. BI-LEVEL LINEAR PROGRAMMING

The general Bi-Level Linear Program (BLLP) has attracted much attention in the

last 30 years (e.g., the literature survey in Vicente and Calamai 1994, the reviews in Ben-

Ayed 1993, and Wen and Hsu 1991). Many algorithms have been suggested to solve the

BLLP and the model has been applied to a number real-world problems. Nonlinear cases

are treated in a few papers (e.g., Falk and Liu 1995) and recently, the more general case,

where part of the variables are set as a function of the others through any type of

equilibrium constraints, is explored too (Luo, Pang and Ralph 1996).

A bi-level program considers two decision-makers, or players, who may be

competitive. Each player controls some activities and wishes to optimize his objective

function, which is a function of all the activities, including those that the second player

controls. The problem can be viewed as a non-zero-sum game where one of the players,

the leader, plays first. Due to common constraints, the actions of the leader influence the

feasible region of the second player, the follower. In his turn, the follower optimizes his

objective function, in view of the decisions of the leader, but independent of the leader's

objective function. We assume perfect information, that is, the leader knows the

objective function and the constraints of the follower and hence can predict the follower's

-ill-

reaction to any decision he makes.

The mathematical programming formulation of BLLP is:

[BL] min c^x + c2
ry

xeX,yeY(x)

where X ={x\Dx<d,x>0}, and

Y(x) = {y|yeargmin c3
ry

s.t. Ay<b-Bx

y^o }

Note that there is no need for a term like c4
rx in the follower's program because

x is a parameter there, not a variable.

7(x) is called the follower's rational reaction set. It is assumed that Y(x) is non-

empty for all XGX. The inducible region is defined as IR = { (x,y) | Dx <d,x>0,ye

7(x) }. With this notation, we can rewrite [BL] as

[BL1] min{c1
rx + c2

ry |(x,y) e/Z?}.

The feasible region to [BL1] may not be convex. Therefore, the problem can be

difficult to solve and may have local optima. However, let iS" be the feasible region of

[BL], i.e., S = { (x,y) | Dx < d, Ay + Bx < b, x > 0, y > 0}. Then, there is a solution of

the problem that is a vertex of S (Bard 1984). As we shall see, many algorithms try to

take advantage of that result by performing an implicit search of all possible solutions

without enumerating all extreme points of S.

112-

B. THE LINEAR MIN-MAX PROBLEM

[LSIP] without the binary constraints is a special case of [BL] with cx = 0 and

c2 = -c3. It is also referred to as the Linear Min-Max Problem (LMN):

[LMN] min cry
xeX,yeF(x)

where X = {x \Dx < d, x > 0}, and

y(x) = {y |/ly<b-5x,y>0}.

Remark: In [BL], If F(x) is not always a singleton, and c2
ry might not have the same

value for all y e 7(x), then a solution to [BL] may not exist (Bard 1991). However, in

[LMN], Cj = 0 and so c2
ry has the same value for all y e 7(x). Thus, when Y(x) is

bounded for all xeZ, an optimal bounded solution for [LMN] must exist.

LMN is equivalent to a structured quadratic problem. Hence, any nonlinear

algorithm is a candidate solution method. However, this quadratic objective formulation

is non-convex and the problem is, consequently, difficult to solve. To see the

equivalence, take the dual of the follower's problem in [LMN] (w are the dual variables)

to obtain:

[LMN1] min (b-Bx)rw = wrb- wrBx
x,w

s.t. Dx < d

ATw >c

x > 0, w > 0.

-113-

C. THE BI-LEVEL MIXED-INTEGER PROBLEM

The problem we are interested in, system interdiction, falls into the category of

the Bi-Level Mixed Integer Program (BLMIP). Let Sx and SY represent the binary, and/or

integer and/or non-negativity restrictions on the values of the variables x and y,

respectively. Then, the formulation of BLMIP is the same as [BL] except that xeSx

replaces x > 0 and yeSy replaces y > 0:

[BLMIP] min Cirx + c2
ry

xeX,yeY(x)

where -X" = {x \Dx < d, x e Sx], and

^(x) ={y|yeargmin c3
ry

s.t. Ay<b-Bx

y^y }

In the system interdiction scenario, Sx <= {0,1}" while Sy c F!" and closed (i.e.,

all the follower's variables are continuous). The general definition of BLMIP is more

flexible, however.

D. APPLICATIONS

The ability of the BLLP model to represent decentralized decision processes,

where several different objective functions are incorporated simultaneously, has attracted

practitioners during the last 30 years. However, the difficulty in solving BLLP constrains

the number of actual applications and few models have passed beyond theoretical

formulation. Furthermore, in a recent review of the BLLP literature, it is stated that "the

overwhelming majority of real-world problems are formulated and solved as single level

programs even when they are virtually bi-level (Ben-Ayed 1993)."

114-

Most of the models and work in the area of involve BLLPs with economic

interpretations (Fortuny-Amat and McCarl 1981). The upper level (leader) is the

government, or the head of an organization, that controls resources, or policy measures

such as prices, taxes and subsidies. The lower level (follower) is the private sector, or the

lower level of the organization, which optimizes its own objective function, after the

higher level sets the rules. Actual work in this area includes agricultural planning,

regulation of the oil industry and the imperfect cartel in the international coal market.

For a list of references see Vicente and Calamai (1994) and Ben-Ayed (1993).

The BLLP model has also been applied to network-design problems for

transportation and communication networks. The two-level formulation takes into

account the reaction of users to the improvements made in the system and hence can lead

to a better plan for the system manager (e.g., LeBlanc and Boyce 1986, Ben-Ayed, Boyce

and Blair 1988).

As one might expect, military models involving worst-case analysis through max-

min formulations were popular during the arms race (e.g., Bracken and McGill 1973).

However, the models, based on weapons attrition theory, are non-linear, and typically the

leader's activities do not change the follower's feasible region. Therefore the solution

approach taken there is not applicable to LSIP.

In the LMN framework, we are familiar with two military-oriented applications:

(a) Max-flow network interdiction (e.g., Wood 1993).

(b) Shortest-path network interdiction (Golden 1978, Fulkerson and Harding 1977).

In Chapter II we discuss in details a version of this problem, in which

interdiction decisions are binary, and not continuous, variables.

115-

E. ALGORITHMS FOR LMN AND BLLP

Currently, few algorithms exist that take advantage of the special structure of

LMN. On the other hand, any of the many algorithms that were suggested for BLLP can

be used to solve LMN as well (Bard and Falk 1982). These algorithms are of interest

because:

(a) We can relax the binary constraints of LSD» if all the extreme points of the leader's

feasible region are binary. Thus, in some cases, an algorithm for BLLP (or LMN)

solves LSIP directly. Also,

(b) As we shall see later, most of the existing algorithms for mixed-integer problems

like LSIP incorporate a continuous-BLLP algorithm to solve sub-problems.

Some of the BLLP algorithms are not well-suited to solving LMNs. As we said

earlier, the LMN is a special case of BLLP with c2 = -c3 and cx = 0. The correlation

(in the usual statistical meaning) between c2 and c3 is therefore -1 for the LMN.

Significantly, most of the existing algorithms for BLLP are positive in the sense that the

algorithm works best when there is a strong positive correlation between c2 and c3, i.e.,

when the objective functions of the leader and the follower are similar, with respect to the

follower's variables. A positive algorithm is likely to have poor performance when

applied to LMN. To solve LMN, we shall use a non-positive algorithm, i.e., an algorithm

that performs well when there is a strong negative correlation between c2 and c3.

While describing the existing algorithms for LMN and BLLP next, we classify

each one as positive or non-positive. The classification is based on algorithmic structure

and is by no means precise, but, in some of the cases, reported computational experience

-116-

also supports our classification. However, unless mentioned specifically, experience with

large problems has not been reported.

1. Implicit Enumeration of Possible Bases

Recall that S is the joint feasible region of the two levels in [BL] and that there is

an optimal solution at a vertex of S. A few algorithms try to use this result by implicit

enumeration of the bases of the polytope that defines S. Usually, the algorithm starts by

letting the leader control all the variables in order to find his optimal solution over the

vertices of S, regardless of the follower's objective. Fixing the leader's variables, the

algorithm solves the follower's problem to determine if the solution is in the inducible

region. If it is, we have reached the optimal solution. Otherwise, we can conclude that

the basis, or the vertex, that the leader chose is not optimal. Several approaches have

been suggested to continue the search over Si's vertices:

(a) A branch-and-bound process can be used where each new branch is a sub-problem

with one of the basic (and positive) variables from the leader's current basis forced to

0. This algorithm was originally suggested for LMN (Falk 1973).

(b) One variant examines only the follower's bases (Candler and Townsley 1982).

Strictly speaking, this algorithm is polynomial when the follower controls a constant

number of variables (Liu and Spencer 1993), but it becomes computationally unusable

when the number of those variables grows to even modest levels.

(c) The "Kth-best" algorithm (Bialas and Karwan 1982) repeatedly finds solutions for the

leader, regardless of the follower's objective, until the Kth best happens to be in the

inducible region.

All of the algorithms just mentioned are positive algorithms because the leader's

-117-

objective is favored and in each major step the leader controls all the variables. These

algorithms cannot be efficient in case of large LMN or LSIP problems.

2. Cutting-Plane Algorithm (Vaish and Shetty 1977)

This algorithm works on the [LMN1] formulation. First it iterates (with

appropriate degeneracy-prevention rules) between the x and w variables until a stationary

point, that may only be only locally optimal, is achieved. Then it computes how far it can

move from the extreme point in any feasible direction (with respect to the leader's

variables) without improving the objective function, wrb - wr2Jx, cuts this part from X,

and starts again. This algorithm works on the LMN problem, but not the BLLP. (BLLP

doesn't fit into formulation [LMN1].) Hence, we classify it as a non-positive algorithm.

3. Branch-and-Bound on KKT Complimentary Conditions (Bard and

Moore 1990)

The "BB-KKT algorithm" replaces the follower's problem with his KKT

optimality conditions. This way, the BLLP is converted to a single-level problem, and a

branch-and-bound procedure is used to implicitly examine all combinations of the non-

linear complementary slackness conditions. Let w be the vector of dual variables

associated with the constraints Ay + Bx < b. Then, the KKT-formulation of BLLP is:

118-

[BL2] min c/x + c2
ry

x,y,w

s.t. Dx <d

Ay + Bx < b

ATv? >c

04rw-c3)
ry =0

(Ay + Bx-bfw = 0

x>0, y>0, w>0.

Random problems with 40 constraints and 100 variables, 40 of them controlled by

the follower, were solved by Bard and Moore, in 300 CPU seconds on average, on an

IBM 3081-D. The main factor that increases the CPU time is the number of variables

controlled by the follower. This result is expected since this is clearly a positive

algorithm: In any relaxed iteration of the branch-and-bound process, the "BB-KKT"

algorithm controls the leader's and follower's variables together.

4. Penalty on Duality Gap (Anandalingam and White 1990)

Here, the BLLP is transformed into a single-level program by replacing the

follower's problem with a penalty on his duality gap (or equivalently, with a penalty on

the complimentary slackness conditions in formulation [BL2]). The reformulation of

BLLP is:

119-

[BL3] min c/x + c2
ry-£(c3

ry-w7(b-Bx))
x,y,w

s.t. Dx <d

Ay + Bx < b

wTA > c3

x>0,y>0,w >0.

Let the optimal solution of [BL3] be (x*,y* w*). x* is feasible in the leader's

problem. Moreover, for k sufficiently large, the duality gap must be zero, so we must

have y*e7(x*). Two different algorithms have been suggested to solve [BL3];

Let 0(w) = minfc/x + c2
ry-£(c3

ry- wr(b-Bx)) \Dx<d,Ay + Bx<b,x>
x,y

0,y > 0} then, [BL3] is equivalent to min{0(w) \vrTA > e3,w > 0}, which is a difficult
w

concave minimization problem. Anandalingam and Apprey (1991) solves this problem

with a successive underestimation method proposed by Falk and Hoffman (1976).

A second way to solve [BL3] is through a "modified simplex algorithm" (Onal

1993), which is a quadratic programming algorithm (Beale 1959) that seems to become

simpler in the special setting of [BL3]. The algorithm maintains a basic feasible solution

and, in each "simplex" iteration, it evaluates the partial derivatives of the objective

function with respect to the non-basic variables (through a relatively complex matrix

calculation). Then, it pivots and chooses the entering variable in the usual way. In each

major iteration, a local optimum might be found, and upper bound (UB) is updated and a

cut, cx
rx + c2

ry <UB-e, is added to the problem. The problem is re-solved until no

feasible solution is found; then we have an s-optimal global, solution.

120-

It is not clear whether these two algorithms should be classified as positive or non-

positive. In both algorithms, the primal variables of the leader and the follower are

controlled simultaneously, and this is a positive approach. However, both algorithms

have a "correction" step where only the follower's dual variables are considered. That

might be considered as a follower's step.

5. Complementarity Approach (Judice and Faustino 1992)

The idea of transforming formulation [BL2] into a parametric linear

complementarity problem was suggested by Bialas and Karwan (1984) but their

algorithm isn't guaranteed to converge to an optimal solution (Ben-ayed and Blair 1990).

In 1988, Judice and Faustino suggested a modification that is guaranteed to converge to

an s-optimal solution. The algorithm was tested on random problems with up to 150

constraints and 250 variables, and was shown to have relatively good performance

(Hansen, Jaumard and Savard 1992). However, the performance of the algorithm

degrades significantly when tested on problems with "conflicting" objectives. This is a

clear evidence that the algorithm is positive.

6. Variable Elimination (Hansen, Jaumard and Savard 1992)

This algorithm performs branch-and-bound on the constraints of the follower's

problem. At each node on the enumeration tree, one more of these constraints is forced

to bind and one of the follower's variables is eliminated. Then, the algorithm lets the

leader control the follower's remaining unfixed variables and the leader's problem is

solved to obtain a local lower bound on the leader's optimal solution. This local bound

may not be global because some of the follower's variables have already been set. If this

local lower bound is worse than the bound from a feasible solution, this node can be

-121-

eliminated. The algorithm is implemented using a depth-first search of the enumeration

tree and each time the search reaches a leaf (all follower's variables are set), the leader's

problem is solved, a feasible solution is exposed and the global upper bound on the

follower's optimal solution is updated, if appropriate.

The algorithm was extensively tested on problems with up to 150 constraints and

250 variables. It was shown to be much better than any other tested algorithm, including

branch-and-bound on the KKT complimentary conditions (Bard and Moore 1990) and the

Judice-Faustino algorithm. However, like those two algorithms, certain random

problems require ten times more computational effort than other problems, and sensitivity

to the number of follower variables is observed. Furthermore, a special set of tests

indicates that the running time decreases when the leader's and follower's objective

functions become more similar. Those results indicate that this is a positive algorithm.

Indeed, the lower bound on the follower's objective used for fathoming will rarely be

effective in the min-max case.

7. A Hybrid Tabu-Ascent Heuristic (Gendreau, Marcotte and Savard

1996).

This algorithm attempts to solve BLLP to near-optimality by a combination of a

few heuristic methods. After a feasible solution is found, the algorithm iterates between a

local-ascent search and a tabu search. The first technique is used to find an optimum that

might be local, and the second is used to move away from a local optimum, to an area

where a solution better than the last local optimum may exist. When the tabu search fails

to find such an area, the algorithm stops.

-122.

The algorithm was tested and compared to the variable elimination algorithm on a

set of random problems, on an HP730 workstation. The largest problems had 200

variables, 75 constraints and a relatively dense constraint matrix (25% non-zero). On

those problems, the heuristic algorithm used 3-13 minutes of CPU time and found better

solutions than the exact algorithm found after 60 minutes of CPU time.

Recall that the variable elimination algorithm has significant variation in running

time between problems of the same size, probably because it is a positive algorithm. The

heuristic algorithm has a much more stable running time. Hence, we can guess that the

heuristic is using a non-positive approach.

F. ALGORITHMS FOR THE BLMH*

Only a few papers have been written concerning solution procedures for the bi-

level mixed integer programming (BLMIP).

1. Parameterized integer program (Bard and Moore 1992)

The algorithm works only when both x and y are binary. It works by solving

instances of the following formulation

[BLMIP1] max c3
ry

s.t. Dx <d

Ay + Bx < b

c1
rx + c2

ry ^a

x&X,yeY

where a is a parameter, equal to the best objective value found so far less 1. (It is

assumed that all objective coefficients are integer.)

123-

The algorithm implicitly enumerates the enumeration tree associated with the

variables x. In each iteration, some of those variables are set to 0 or 1 and the remaining

problem is solved as a standard MBP. When the MIP is infeasible, the branch is deleted.

Otherwise, x is fixed and the follower's problem is solved to obtain a feasible solution to

the original problem, [BLMIP]. If the two solutions are the same, there is no need to

develop this branch anymore. Otherwise the enumeration process continues by

restricting x further. The algorithm uses specific branching and backtracking rules that

were optimized with respect to a set of random problems.

Computational results with random problems with up to 45 binary variables were

reported. On average it took 100-150 CPU seconds on an IBM 3081-D to solve problems

with 30 x variables and 15 y variables. Wide variations in the algorithm's running time

and sensitivity to the number of variables under the follower's control were observed.

Both these results are probably because this is a positive algorithm. If we substitute the

LSIP conditions, c1 = 0 and c3 = -c2, then [BLMI1] would become almost useless and

the algorithm might enumerate all possible values for x.

2. "Classical" branch-and-bound (Moore and Bard 1990)

The algorithm solves the mixed integer bi-level program similar to the way

branch-and-bound is used to solve MTPs. At every node, a relaxed BLLP is solved and

the enumeration tree is developed and fathomed with appropriate fathoming rules. When

all the leader's variables are continuous, as in LSIP, the three "regular" fathoming rules

(infeasiblity, new integer solution and objective value worse then a known integer

solution) are valid and used in the usual way. When all or part of the follower's variables

are restricted to integer values, the fathoming rules must be modified, however.

-124-

This algorithm's performance hinges on the sub-algorithm that is used to solve the

relaxed BLLP problems (which are NP-hard.) Originally the algorithm was implemented

with the "BB-KKT algorithm", which is positive, and not appropriate for solving LSIP.

The algorithm could work with other sub-algorithms as well, but, recall that we have

found no non-positive algorithm for BLLP that has been tested on large problems.

3. Binary search algorithm (Wen and Yang 1990)

As in LSIP, this algorithm assumes binary leader variables and continuous

follower variables. However, the algorithm doesn't assume the min-max case, and

allows independent objective functions for the leader and the follower.

The algorithm implicitly examines all possible values of the leader's variables

through a branch-and-bound process. At each node in the enumeration tree, a few of the

leader's variables are set to 0 or 1 and the algorithm uses an LP (which we won't describe

here) to calculate a local lower bound on the leader's objective. This branch is fathomed

if the bound is worse than the best solution value found so far. When all the variables x

have been set to 0 or 1, the follower's problem is solved to obtain a new feasible solution.

The algorithm is positive, and when it's applied to a problem such as system

interdiction, the lower bound from the LP will not be useful at all. Thus, the algorithm

might enumerate all possible values for x. Moreover, even on random problems the

algorithm's performance is poor and the authors suggest using a heuristic, which we

describe next.

-125

4. Greedy Heuristic (Wen and Yang, 1990)

This heuristic uses a greedy approach. At each iteration, a few of the leader's

variables are set to 1 and the follower's problem is solved, as well as the LP mentioned

above. Based on the dual variables of these solutions, a "judgment index" for the profit

of the leader from setting each one of his variables to 1 is calculated. The variable with

the maximum judgment index is set to 1. The algorithm starts with all the variables equal

to 0. In each iteration, it sets one more variable to 1, and continues until no more

variables can be set without violating feasibility. The heuristic is extremely fast and, on

average, achieves better than a 3% optimality gap when tested on random problems.

However, it is easy to build an example where this simple greedy heuristic will give

arbitrarily bad results.

The heuristic becomes simpler when it applied to LSIP. In every iteration, the

follower's problem is solved with the current set of interdicted activities, the "judgment

index" of interdicting activity j is Uj times the dual variable of the constraint^ < uj. The

activity with the largest judgement index is interdicted, and the process continuous

recursively.

5. Reducing into BLLP (Vicente, Savard and Judice 1996)

The last algorithm suggested so far for solving BLMDP transforms the problem

into a regular BLLP. It is shown that if (a) y is continuous, (b) x is binary, (c) M is

sufficiently large, and, (d) cx < 0 and c2 ^ 0 (without loss of generality), then [BLMTP]

is equivalent to:

126 ■

[BLMIP2] min c/x + c/y + Merw
xeX,(y,w)eIW(x)

where X = {x \Dx < d, 0 < x < e}

YW(x) = {(y, w) | (y, w) e arg max c3
ry + erw

y,w

s.t. Ay<b-Bx

w <x

w <e-x

y ey }

where e is a vector of ones with appropriate dimension.

As with other models using penalty terms, a key problem is to determine how

large M should be. Vicente et al. suggest solving a sequence of BLLPs for increasing

values of the penalty term. When the optimal solution in the kth iteration has all leader

variables at 0 or 1 we can stop and declare optimality. Otherwise M = Mk is increased to

Mk+1 = (-c^Xjt - c2
ry^)/erwA., and the non-integer optimal solution of the Äth

iteration will give a positive and unattractive objective in the following iteration.

Computational experience has not been reported and it is not clear whether computational

difficulties are expected (due to the large penalty multiplier).

G. CONCLUSIONS

The main conclusion of this appendix is that the existing literature on general

BLLPs does not suggest suitable algorithms for the special structure of LSIP. We

support this statement with the following observations:

(a) Only three exact algorithms (Bard and Moore 1990, Hansen, Jaumard and Savard

1992, Section 16.3.3 in Shimizu, Ishizuka and Bard 1997) have been tested on

127-

relatively large BLLPs. These algorithms all use a strongly positive approach,

which means that they work better when there is strong correlation between the

leader's and follower's objective functions. Hence, they would probably not be

efficient when applied to min-max problems, like LSIP. Only a few exact

algorithms (Vaish and Shetty 1977, Anandalingam and Apprey 1991, Onal, 1993)

that may use a non-positive approach exist, and none of those has been tested on

large problems.

(b) Existing algorithms for the mixed integer case, BLMIP, are either positive by

themselves (Bard and Moore 1992, Wen and Yang 1990) or are based on a BLLP

algorithm as a subroutine (Moore and Bard 1989, Vicente, Savard and Judice

1996). And, as mentioned above, there are no BLLP algorithms that seem to be

attractive for solving LSIP.

(c) None of the existing algorithms, exact or heuristic, is designed to take advantage

of the special min-max structure of LSIP. Moreover, the algorithms have

typically been tested on "random problems."

We have established that none of the existing algorithms for BLLPs or BLMIJPs is

really appropriate for LSJJP. Therefore, in Chapters II and Chapter m, we develop

three new algorithms specially tailored to LSIP. The algorithms definitely exploit the

special structure of LSIP and cannot be applied to a general BLMIP. In Chapter n, we

demonstrate the effectiveness of the algorithms on a special-case problem, shortest-path

network interdiction.

128-

APPENDIX B: THE MORE GENERAL SYSTEM INTERDICTION PROBLEM

Proposition 3.1: When Assumption 3.1 holds, the basic linear system interdiction

[LSIP] min max cry
xeX y<=Y(x)

where X = [x e {0,l}n | Rx < r], and

F(x) = {y\Ay<b,0<y<U(l-x),yGS}

is equivalent to the more general linear system-interdiction problem defined as

[LSIP*] min max cry-xrVy
xeX ysY(x)

where X = jx G{0,1}" Rx < r}, and

where C/=diag(u), SandS include integer or binary restrictions on elements of

yandy respectively, A eRkxm, V eR*x™, A e Rkxih andB& R$.x".

Remarks:

(a) The general case, [LSIP*], allows an interdiction by the leader to affect one or

more of the follower's available resources and/or the availability and cost of the

follower's possible activities.

(b) The restriction that By > 0 is acceptable, because it is unlikely that an

interdiction will relax any of the system's constraints.

-129.

Proof:

Set A =
A

, b =
b

, B =
0

I u B
, and V = [0]. Then, [LSIP] takes the form of

[LSIP*].

For the second direction, we first show how to drop out the non-linear term in the

objective function of [LSIP*]. Let us introduce n new variables, yeÄj, and n new

constraints, y > Vy - V(l - x). Set y

~y\ ~

y
, c =

c
, b =

b
, ^4 =

- yv —

^ 0

y -lj VI _v -/

£ = and V = [0]. These new constraints and the unattractive coefficients of y in

the objective function, guarantee that y7- = ^(Vy)j if Xj =1 (recall that VeÄjxm).
Xj=l

Therefore, for every x e X the solution of the inner maximization problem stays the

same, and so this transformation doesn't change the optimal solution. We conclude that

we can assume that V = [0].

We now show how to rearrange the structure of the constraints in Y(x). Let us

(kxn) _ ~
introduce (k x h + n) new variables, z e R+ and y e R . (Note that z is a vector, not

a matrix.) We add the following constraints: (a) y < 1 - x, and (b) z(i_1)Ä+7- > 2?y(l - y})

for 7=1,.., £ and J=l,..,n. (For simplicity we denote Z^^+j by Zy .)

To finish the construction, the original/th constraint, ^AySj < bj -^ByXj , is
.7=1 7=1

130-

replaced by j^AjSj - ty ~ 2zy • This replacement changes nothing, because:
i=l 7=1

(a) If activity j is interdicted (x, = 1), then these constraints and construction set

Jj = 0 and therefore ztj > Btj for i. However, for every interdiction plan x, there

is an optimal solution with ztj = Btj for all /, because z only tightens constraints.

(b) In the same way, when activity j is not interdicted (x, = 0), for every interdiction

plan x, there is an optimal solution with Zy - 0 for all /'.

It is easy to verify that the new construction fits into formulation [LSIP], where

y, y, and z are aggregated into y, and A, U, and b, are defined appropriately. ■

131-

-132-

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
8725 John J. Klingman Rd., Ste 0944
Ft. Belvoir, VA 22060-6218

2. Dudley KnoxLibrary (411 Dyer Rd.) 2
Naval Postgraduate School
Monterey, CA 93943-5101

3. Professor R. Kevin Wood Code OR/Wd 10
Naval Postgraduate School
Monterey, CA 93943-5002

4. Professor Gerald G. Brown Code OR/Bw 1
Naval Postgraduate School
Monterey, CA 93943-5002

5. Professor AlanR. WashburnCode OR/Ws 1
Naval Postgraduate School
Monterey, CA 93943-5002

6. Adjunct Professor Wayne P. Hughes Code OR/HI 1
Naval Postgraduate School
Monterey, CA 93943-5002

7. Professor Harold Fredricksen Code MA/Fr 1
Naval Postgraduate School
Monterey, CA 93943-5002

8. Major Eitan Israeli 5
2 Arbel St.
Reu't, Israel, 71908

133

